Round Number to Nearest Integer

Round number to nearest integer

TL;DR:

round(x)

will round it and change it to integer.

You are not assigning round(h) to any variable. When you call round(h), it returns the integer number but does nothing else; you have to change that line for:

h = round(h)

to assign the new value to h.


As @plowman said in the comments, Python's round() doesn't work as one would normally expect, and that's because the way the number is stored as a variable is usually not the way you see it on screen. There are lots of answers that explain this behavior.

One way to avoid this problem is to use the Decimal as stated by this answer.

In order for this answer to work properly without using extra libraries it would be convenient to use a custom rounding function. I came up with the following solution, that as far as I tested avoided all the storing issues. It is based on using the string representation, obtained with repr() (NOT str()!). It looks hacky but it was the only way I found to solve all the cases. It works with both Python2 and Python3.

def proper_round(num, dec=0):
num = str(num)[:str(num).index('.')+dec+2]
if num[-1]>='5':
return float(num[:-2-(not dec)]+str(int(num[-2-(not dec)])+1))
return float(num[:-1])

Tests:

>>> print(proper_round(1.0005,3))
1.001
>>> print(proper_round(2.0005,3))
2.001
>>> print(proper_round(3.0005,3))
3.001
>>> print(proper_round(4.0005,3))
4.001
>>> print(proper_round(5.0005,3))
5.001
>>> print(proper_round(1.005,2))
1.01
>>> print(proper_round(2.005,2))
2.01
>>> print(proper_round(3.005,2))
3.01
>>> print(proper_round(4.005,2))
4.01
>>> print(proper_round(5.005,2))
5.01
>>> print(proper_round(1.05,1))
1.1
>>> print(proper_round(2.05,1))
2.1
>>> print(proper_round(3.05,1))
3.1
>>> print(proper_round(4.05,1))
4.1
>>> print(proper_round(5.05,1))
5.1
>>> print(proper_round(1.5))
2.0
>>> print(proper_round(2.5))
3.0
>>> print(proper_round(3.5))
4.0
>>> print(proper_round(4.5))
5.0
>>> print(proper_round(5.5))
6.0
>>>
>>> print(proper_round(1.000499999999,3))
1.0
>>> print(proper_round(2.000499999999,3))
2.0
>>> print(proper_round(3.000499999999,3))
3.0
>>> print(proper_round(4.000499999999,3))
4.0
>>> print(proper_round(5.000499999999,3))
5.0
>>> print(proper_round(1.00499999999,2))
1.0
>>> print(proper_round(2.00499999999,2))
2.0
>>> print(proper_round(3.00499999999,2))
3.0
>>> print(proper_round(4.00499999999,2))
4.0
>>> print(proper_round(5.00499999999,2))
5.0
>>> print(proper_round(1.0499999999,1))
1.0
>>> print(proper_round(2.0499999999,1))
2.0
>>> print(proper_round(3.0499999999,1))
3.0
>>> print(proper_round(4.0499999999,1))
4.0
>>> print(proper_round(5.0499999999,1))
5.0
>>> print(proper_round(1.499999999))
1.0
>>> print(proper_round(2.499999999))
2.0
>>> print(proper_round(3.499999999))
3.0
>>> print(proper_round(4.499999999))
4.0
>>> print(proper_round(5.499999999))
5.0

Finally, the corrected answer would be:

# Having proper_round defined as previously stated
h = int(proper_round(h))

Tests:

>>> proper_round(6.39764125, 2)
6.31 # should be 6.4
>>> proper_round(6.9764125, 1)
6.1 # should be 7

The gotcha here is that the dec-th decimal can be 9 and if the dec+1-th digit >=5 the 9 will become a 0 and a 1 should be carried to the dec-1-th digit.

If we take this into consideration, we get:

def proper_round(num, dec=0):
num = str(num)[:str(num).index('.')+dec+2]
if num[-1]>='5':
a = num[:-2-(not dec)] # integer part
b = int(num[-2-(not dec)])+1 # decimal part
return float(a)+b**(-dec+1) if a and b == 10 else float(a+str(b))
return float(num[:-1])

In the situation described above b = 10 and the previous version would just concatenate a and b which would result in a concatenation of 10 where the trailing 0 would disappear. This version transforms b to the right decimal place based on dec, as a proper carry.

How to Round to the nearest whole number in C#

See the official documentation for more. For example:

Basically you give the Math.Round method three parameters.

  1. The value you want to round.
  2. The number of decimals you want to keep after the value.
  3. An optional parameter you can invoke to use AwayFromZero rounding. (ignored unless rounding is ambiguous, e.g. 1.5)

Sample code:

var roundedA = Math.Round(1.1, 0); // Output: 1
var roundedB = Math.Round(1.5, 0, MidpointRounding.AwayFromZero); // Output: 2
var roundedC = Math.Round(1.9, 0); // Output: 2
var roundedD = Math.Round(2.5, 0); // Output: 2
var roundedE = Math.Round(2.5, 0, MidpointRounding.AwayFromZero); // Output: 3
var roundedF = Math.Round(3.49, 0, MidpointRounding.AwayFromZero); // Output: 3

Live Demo

You need MidpointRounding.AwayFromZero if you want a .5 value to be rounded up. Unfortunately this isn't the default behavior for Math.Round(). If using MidpointRounding.ToEven (the default) the value is rounded to the nearest even number (1.5 is rounded to 2, but 2.5 is also rounded to 2).

How do you round a number to the closest integer in java without using the round function or if and else statements?

The answer is pretty simple. Add 0.5 to the number and then cast it to an int. Like this:

int rounded = (int) (unrounded + 0.5);

This works because if the decimal part is less than 0.5, the integer part stays the same, and truncation gives the right result. If the decimal part is more that 0.5, the integer part increments, and again truncation gives what we want.

Rounding a variable to the nearest integer

There's no round function. Use Math.round function instead.

var score = 600;var coinBase = 400;var coinInt = score / coinBase;var coin = Math.round(coinInt);
console.log(coin);

Javascript round up to the nearest integer

Use Math.ceil function. It will always round up to the nearest integer.

var num1 = 3.0;var num2 = 3.1;var num3 = 3.9;
console.log(Math.ceil(num1));console.log(Math.ceil(num2));console.log(Math.ceil(num3));

C# - Rounding Down to Nearest Integer

Just try this..

 int interval = Convert.ToInt32(Math.Floor(different/increment));


Related Topics



Leave a reply



Submit