How to Save/Restore a Model After Training

How to save/restore a model after training?

Tensorflow 2 Docs

Saving Checkpoints

Adapted from the docs

# -------------------------
# ----- Toy Context -----
# -------------------------
import tensorflow as tf


class Net(tf.keras.Model):
"""A simple linear model."""

def __init__(self):
super(Net, self).__init__()
self.l1 = tf.keras.layers.Dense(5)

def call(self, x):
return self.l1(x)


def toy_dataset():
inputs = tf.range(10.0)[:, None]
labels = inputs * 5.0 + tf.range(5.0)[None, :]
return (
tf.data.Dataset.from_tensor_slices(dict(x=inputs, y=labels)).repeat().batch(2)
)


def train_step(net, example, optimizer):
"""Trains `net` on `example` using `optimizer`."""
with tf.GradientTape() as tape:
output = net(example["x"])
loss = tf.reduce_mean(tf.abs(output - example["y"]))
variables = net.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
return loss


# ----------------------------
# ----- Create Objects -----
# ----------------------------

net = Net()
opt = tf.keras.optimizers.Adam(0.1)
dataset = toy_dataset()
iterator = iter(dataset)
ckpt = tf.train.Checkpoint(
step=tf.Variable(1), optimizer=opt, net=net, iterator=iterator
)
manager = tf.train.CheckpointManager(ckpt, "./tf_ckpts", max_to_keep=3)

# ----------------------------
# ----- Train and Save -----
# ----------------------------

ckpt.restore(manager.latest_checkpoint)
if manager.latest_checkpoint:
print("Restored from {}".format(manager.latest_checkpoint))
else:
print("Initializing from scratch.")

for _ in range(50):
example = next(iterator)
loss = train_step(net, example, opt)
ckpt.step.assign_add(1)
if int(ckpt.step) % 10 == 0:
save_path = manager.save()
print("Saved checkpoint for step {}: {}".format(int(ckpt.step), save_path))
print("loss {:1.2f}".format(loss.numpy()))


# ---------------------
# ----- Restore -----
# ---------------------

# In another script, re-initialize objects
opt = tf.keras.optimizers.Adam(0.1)
net = Net()
dataset = toy_dataset()
iterator = iter(dataset)
ckpt = tf.train.Checkpoint(
step=tf.Variable(1), optimizer=opt, net=net, iterator=iterator
)
manager = tf.train.CheckpointManager(ckpt, "./tf_ckpts", max_to_keep=3)

# Re-use the manager code above ^

ckpt.restore(manager.latest_checkpoint)
if manager.latest_checkpoint:
print("Restored from {}".format(manager.latest_checkpoint))
else:
print("Initializing from scratch.")

for _ in range(50):
example = next(iterator)
# Continue training or evaluate etc.

More links

  • exhaustive and useful tutorial on saved_model -> https://www.tensorflow.org/guide/saved_model

  • keras detailed guide to save models -> https://www.tensorflow.org/guide/keras/save_and_serialize

Checkpoints capture the exact value of all parameters (tf.Variable objects) used by a model. Checkpoints do not contain any description of the computation defined by the model and thus are typically only useful when source code that will use the saved parameter values is available.

The SavedModel format on the other hand includes a serialized description of the computation defined by the model in addition to the parameter values (checkpoint). Models in this format are independent of the source code that created the model. They are thus suitable for deployment via TensorFlow Serving, TensorFlow Lite, TensorFlow.js, or programs in other programming languages (the C, C++, Java, Go, Rust, C# etc. TensorFlow APIs).

(Highlights are my own)



Tensorflow < 2


From the docs:

Save

# Create some variables.
v1 = tf.get_variable("v1", shape=[3], initializer = tf.zeros_initializer)
v2 = tf.get_variable("v2", shape=[5], initializer = tf.zeros_initializer)

inc_v1 = v1.assign(v1+1)
dec_v2 = v2.assign(v2-1)

# Add an op to initialize the variables.
init_op = tf.global_variables_initializer()

# Add ops to save and restore all the variables.
saver = tf.train.Saver()

# Later, launch the model, initialize the variables, do some work, and save the
# variables to disk.
with tf.Session() as sess:
sess.run(init_op)
# Do some work with the model.
inc_v1.op.run()
dec_v2.op.run()
# Save the variables to disk.
save_path = saver.save(sess, "/tmp/model.ckpt")
print("Model saved in path: %s" % save_path)

Restore

tf.reset_default_graph()

# Create some variables.
v1 = tf.get_variable("v1", shape=[3])
v2 = tf.get_variable("v2", shape=[5])

# Add ops to save and restore all the variables.
saver = tf.train.Saver()

# Later, launch the model, use the saver to restore variables from disk, and
# do some work with the model.
with tf.Session() as sess:
# Restore variables from disk.
saver.restore(sess, "/tmp/model.ckpt")
print("Model restored.")
# Check the values of the variables
print("v1 : %s" % v1.eval())
print("v2 : %s" % v2.eval())

simple_save

Many good answer, for completeness I'll add my 2 cents: simple_save. Also a standalone code example using the tf.data.Dataset API.

Python 3 ; Tensorflow 1.14

import tensorflow as tf
from tensorflow.saved_model import tag_constants

with tf.Graph().as_default():
with tf.Session() as sess:
...

# Saving
inputs = {
"batch_size_placeholder": batch_size_placeholder,
"features_placeholder": features_placeholder,
"labels_placeholder": labels_placeholder,
}
outputs = {"prediction": model_output}
tf.saved_model.simple_save(
sess, 'path/to/your/location/', inputs, outputs
)

Restoring:

graph = tf.Graph()
with restored_graph.as_default():
with tf.Session() as sess:
tf.saved_model.loader.load(
sess,
[tag_constants.SERVING],
'path/to/your/location/',
)
batch_size_placeholder = graph.get_tensor_by_name('batch_size_placeholder:0')
features_placeholder = graph.get_tensor_by_name('features_placeholder:0')
labels_placeholder = graph.get_tensor_by_name('labels_placeholder:0')
prediction = restored_graph.get_tensor_by_name('dense/BiasAdd:0')

sess.run(prediction, feed_dict={
batch_size_placeholder: some_value,
features_placeholder: some_other_value,
labels_placeholder: another_value
})

Standalone example

Original blog post

The following code generates random data for the sake of the demonstration.

  1. We start by creating the placeholders. They will hold the data at runtime. From them, we create the Dataset and then its Iterator. We get the iterator's generated tensor, called input_tensor which will serve as input to our model.
  2. The model itself is built from input_tensor: a GRU-based bidirectional RNN followed by a dense classifier. Because why not.
  3. The loss is a softmax_cross_entropy_with_logits, optimized with Adam. After 2 epochs (of 2 batches each), we save the "trained" model with tf.saved_model.simple_save. If you run the code as is, then the model will be saved in a folder called simple/ in your current working directory.
  4. In a new graph, we then restore the saved model with tf.saved_model.loader.load. We grab the placeholders and logits with graph.get_tensor_by_name and the Iterator initializing operation with graph.get_operation_by_name.
  5. Lastly we run an inference for both batches in the dataset, and check that the saved and restored model both yield the same values. They do!

Code:

import os
import shutil
import numpy as np
import tensorflow as tf
from tensorflow.python.saved_model import tag_constants


def model(graph, input_tensor):
"""Create the model which consists of
a bidirectional rnn (GRU(10)) followed by a dense classifier

Args:
graph (tf.Graph): Tensors' graph
input_tensor (tf.Tensor): Tensor fed as input to the model

Returns:
tf.Tensor: the model's output layer Tensor
"""
cell = tf.nn.rnn_cell.GRUCell(10)
with graph.as_default():
((fw_outputs, bw_outputs), (fw_state, bw_state)) = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell,
cell_bw=cell,
inputs=input_tensor,
sequence_length=[10] * 32,
dtype=tf.float32,
swap_memory=True,
scope=None)
outputs = tf.concat((fw_outputs, bw_outputs), 2)
mean = tf.reduce_mean(outputs, axis=1)
dense = tf.layers.dense(mean, 5, activation=None)

return dense


def get_opt_op(graph, logits, labels_tensor):
"""Create optimization operation from model's logits and labels

Args:
graph (tf.Graph): Tensors' graph
logits (tf.Tensor): The model's output without activation
labels_tensor (tf.Tensor): Target labels

Returns:
tf.Operation: the operation performing a stem of Adam optimizer
"""
with graph.as_default():
with tf.variable_scope('loss'):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=labels_tensor, name='xent'),
name="mean-xent"
)
with tf.variable_scope('optimizer'):
opt_op = tf.train.AdamOptimizer(1e-2).minimize(loss)
return opt_op


if __name__ == '__main__':
# Set random seed for reproducibility
# and create synthetic data
np.random.seed(0)
features = np.random.randn(64, 10, 30)
labels = np.eye(5)[np.random.randint(0, 5, (64,))]

graph1 = tf.Graph()
with graph1.as_default():
# Random seed for reproducibility
tf.set_random_seed(0)
# Placeholders
batch_size_ph = tf.placeholder(tf.int64, name='batch_size_ph')
features_data_ph = tf.placeholder(tf.float32, [None, None, 30], 'features_data_ph')
labels_data_ph = tf.placeholder(tf.int32, [None, 5], 'labels_data_ph')
# Dataset
dataset = tf.data.Dataset.from_tensor_slices((features_data_ph, labels_data_ph))
dataset = dataset.batch(batch_size_ph)
iterator = tf.data.Iterator.from_structure(dataset.output_types, dataset.output_shapes)
dataset_init_op = iterator.make_initializer(dataset, name='dataset_init')
input_tensor, labels_tensor = iterator.get_next()

# Model
logits = model(graph1, input_tensor)
# Optimization
opt_op = get_opt_op(graph1, logits, labels_tensor)

with tf.Session(graph=graph1) as sess:
# Initialize variables
tf.global_variables_initializer().run(session=sess)
for epoch in range(3):
batch = 0
# Initialize dataset (could feed epochs in Dataset.repeat(epochs))
sess.run(
dataset_init_op,
feed_dict={
features_data_ph: features,
labels_data_ph: labels,
batch_size_ph: 32
})
values = []
while True:
try:
if epoch < 2:
# Training
_, value = sess.run([opt_op, logits])
print('Epoch {}, batch {} | Sample value: {}'.format(epoch, batch, value[0]))
batch += 1
else:
# Final inference
values.append(sess.run(logits))
print('Epoch {}, batch {} | Final inference | Sample value: {}'.format(epoch, batch, values[-1][0]))
batch += 1
except tf.errors.OutOfRangeError:
break
# Save model state
print('\nSaving...')
cwd = os.getcwd()
path = os.path.join(cwd, 'simple')
shutil.rmtree(path, ignore_errors=True)
inputs_dict = {
"batch_size_ph": batch_size_ph,
"features_data_ph": features_data_ph,
"labels_data_ph": labels_data_ph
}
outputs_dict = {
"logits": logits
}
tf.saved_model.simple_save(
sess, path, inputs_dict, outputs_dict
)
print('Ok')
# Restoring
graph2 = tf.Graph()
with graph2.as_default():
with tf.Session(graph=graph2) as sess:
# Restore saved values
print('\nRestoring...')
tf.saved_model.loader.load(
sess,
[tag_constants.SERVING],
path
)
print('Ok')
# Get restored placeholders
labels_data_ph = graph2.get_tensor_by_name('labels_data_ph:0')
features_data_ph = graph2.get_tensor_by_name('features_data_ph:0')
batch_size_ph = graph2.get_tensor_by_name('batch_size_ph:0')
# Get restored model output
restored_logits = graph2.get_tensor_by_name('dense/BiasAdd:0')
# Get dataset initializing operation
dataset_init_op = graph2.get_operation_by_name('dataset_init')

# Initialize restored dataset
sess.run(
dataset_init_op,
feed_dict={
features_data_ph: features,
labels_data_ph: labels,
batch_size_ph: 32
}

)
# Compute inference for both batches in dataset
restored_values = []
for i in range(2):
restored_values.append(sess.run(restored_logits))
print('Restored values: ', restored_values[i][0])

# Check if original inference and restored inference are equal
valid = all((v == rv).all() for v, rv in zip(values, restored_values))
print('\nInferences match: ', valid)

This will print:

$ python3 save_and_restore.py

Epoch 0, batch 0 | Sample value: [-0.13851789 -0.3087595 0.12804556 0.20013677 -0.08229901]
Epoch 0, batch 1 | Sample value: [-0.00555491 -0.04339041 -0.05111827 -0.2480045 -0.00107776]
Epoch 1, batch 0 | Sample value: [-0.19321944 -0.2104792 -0.00602257 0.07465433 0.11674127]
Epoch 1, batch 1 | Sample value: [-0.05275984 0.05981954 -0.15913513 -0.3244143 0.10673307]
Epoch 2, batch 0 | Final inference | Sample value: [-0.26331693 -0.13013336 -0.12553 -0.04276478 0.2933622 ]
Epoch 2, batch 1 | Final inference | Sample value: [-0.07730117 0.11119192 -0.20817074 -0.35660955 0.16990358]

Saving...
INFO:tensorflow:Assets added to graph.
INFO:tensorflow:No assets to write.
INFO:tensorflow:SavedModel written to: b'/some/path/simple/saved_model.pb'
Ok

Restoring...
INFO:tensorflow:Restoring parameters from b'/some/path/simple/variables/variables'
Ok
Restored values: [-0.26331693 -0.13013336 -0.12553 -0.04276478 0.2933622 ]
Restored values: [-0.07730117 0.11119192 -0.20817074 -0.35660955 0.16990358]

Inferences match: True

tensorflow : how to save/restore trained model

You are using convert_variables_to_constants, so you are good indeed on the training side. Note for the passer-by, that API appeared in v1.0 (if I am not mistaken after tracking a bit the API).

On the load side, I think the minimum code is one command shorter. Given that you have turned all the variables into constants, there is no variable to initialize on restore. So the line:

tf.global_variables_initializer().run()

Does nothing. From the docs of v1.3:

If var_list is empty, however, the function still returns an Op that can be run. That Op just has no effect.

The load script has no global varibale, and since tf.global_variables_initializer() is equivalent to tf.variables_initializer(tf.global_variables()), the operation is a no-op.

Saving tensorflow model after training is finished

It seems like from the tensorflow documentation, the "session" is the thing that holds the information from the trained model. So presumably somewhere you called sess.run() to train your model - what you want to do is call sess.save() using THAT session, not a new one you create with this saver object.

How to save tensorflow model with best weights

Use save _best_only argument:

model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
save_weights_only=True,
monitor='val_accuracy',
mode='max',
save_best_only=True)

How to save trained model in tensorflow?

Simplest way to save and restore:

To save:

saver = tf.train.Saver(max_to_keep=1) 
with tf.Session() as sess:
# train your model, then:
savePath = saver.save(sess, 'someDir/my_model.ckpt')

To restore:

with tf.Session() as sess:
saver = tf.train.import_meta_graph('someDir/my_model.ckpt.meta')
saver.restore(sess, pathModel + 'someDir/my_model.ckpt')
# access a variable from the saved Graph, and so on:
someVar = sess.run('varName:0')

This should do it



Related Topics



Leave a reply



Submit