How to Install Cross Compiled Cups to Target Board

How to install cross compiled cups to target board?

DSTROOT=/media/rootfs option in make install is the solution for cups.

./configure --host=arm-linux-gnueabihf --disable-gssapi --libdir=/usr/lib
make
sudo make install DSTROOT=/media/rootfs

Dont use --prefix.

cups arm cross compilation error: unknown type name ‘gss_OID’

Your invocation of the configure script is wrong. For cross-compilation, --host should be the prefix of your cross compiler. For instance:


./configure --host=arm-linux-gnueabi

Moreover, you probably need to pass some options to CUPS' configure script in order to disable some components. For instance, --disable-gssapi will disable support for Kerberos and probably fix your "gss" errors.

Segfault when running cross-compiled HelloWorld to armv5te on a board with CPU arm926ej-s

My first bet are incompatible ABI. Your binary:

0x5000200, Version5 EABI, soft-float ABI

Binaries from your board:

0x5000002, Version5 EABI, <unknown>

Next bet, your binary has many sections missing, so it looks like linker issue. Your QEMU environment isn't identical to that used on your target, but I'd expect your QEMU runs bare metal binary. These cannot run under Linux as would not have direct access to hardware & peripherals.

You need to setup your linker to link ELF compatible with environment on your board. I don't have experience with Freescale but looking at any project that cross compiles for this board should lead you to proper linker invocation.

How to install the Raspberry Pi cross compiler on my Linux host machine?

I'm gonna try to write this as a tutorial for you so it becomes easy to follow.

NOTE:
This tutorial only works for older raspbian images. For the newer Raspbian based on Debian Buster see the following how-to in this thread: https://stackoverflow.com/a/58559140/869402

Pre-requirements

Before you start you need to make sure the following is installed:

apt-get install git rsync cmake libc6-i386 lib32z1 lib32stdc++6

Let's cross compile a Pie!

Start with making a folder in your home directory called raspberrypi.

Go in to this folder and pull down the ENTIRE tools folder you mentioned above:

git clone git://github.com/raspberrypi/tools.git

You wanted to use the following of the 3 ones, gcc-linaro-arm-linux-gnueabihf-raspbian, if I did not read wrong.

Go into your home directory and add:

export PATH=$PATH:$HOME/raspberrypi/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian/bin

to the end of the file named ~/.bashrc

Now you can either log out and log back in (i.e. restart your terminal session), or run . ~/.bashrc in your terminal to pick up the PATH addition in your current terminal session.

Now, verify that you can access the compiler arm-linux-gnueabihf-gcc -v. You should get something like this:

Using built-in specs.
COLLECT_GCC=arm-linux-gnueabihf-gcc
COLLECT_LTO_WRAPPER=/home/tudhalyas/raspberrypi/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian/bin/../libexec/gcc/arm-linux-gnueabihf/4.7.2/lto-wrapper
Target: arm-linux-gnueabihf
Configured with: /cbuild/slaves/oort61/crosstool-ng/builds/arm-linux-gnueabihf-raspbian-linux/.b
uild/src/gcc-linaro-4.7-2012.08/configure --build=i686-build_pc-linux-gnu --host=i686-build_pc-
linux-gnu --target=arm-linux-gnueabihf --prefix=/cbuild/slaves/oort61/crosstool-ng/builds/arm-l
inux-gnueabihf-raspbian-linux/install --with-sysroot=/cbuild/slaves/oort61/crosstool-ng/builds/
arm-linux-gnueabihf-raspbian-linux/install/arm-linux-gnueabihf/libc --enable-languages=c,c++,fo
rtran --disable-multilib --with-arch=armv6 --with-tune=arm1176jz-s --with-fpu=vfp --with-float=
hard --with-pkgversion='crosstool-NG linaro-1.13.1+bzr2458 - Linaro GCC 2012.08' --with-bugurl=
https://bugs.launchpad.net/gcc-linaro --enable-__cxa_atexit --enable-libmudflap --enable-libgom
p --enable-libssp --with-gmp=/cbuild/slaves/oort61/crosstool-ng/builds/arm-linux-gnueabihf-rasp
bian-linux/.build/arm-linux-gnueabihf/build/static --with-mpfr=/cbuild/slaves/oort61/crosstool-
ng/builds/arm-linux-gnueabihf-raspbian-linux/.build/arm-linux-gnueabihf/build/static --with-mpc
=/cbuild/slaves/oort61/crosstool-ng/builds/arm-linux-gnueabihf-raspbian-linux/.build/arm-linux-
gnueabihf/build/static --with-ppl=/cbuild/slaves/oort61/crosstool-ng/builds/arm-linux-gnueabihf
-raspbian-linux/.build/arm-linux-gnueabihf/build/static --with-cloog=/cbuild/slaves/oort61/cros
stool-ng/builds/arm-linux-gnueabihf-raspbian-linux/.build/arm-linux-gnueabihf/build/static --wi
th-libelf=/cbuild/slaves/oort61/crosstool-ng/builds/arm-linux-gnueabihf-raspbian-linux/.build/a
rm-linux-gnueabihf/build/static --with-host-libstdcxx='-L/cbuild/slaves/oort61/crosstool-ng/bui
lds/arm-linux-gnueabihf-raspbian-linux/.build/arm-linux-gnueabihf/build/static/lib -lpwl' --ena
ble-threads=posix --disable-libstdcxx-pch --enable-linker-build-id --enable-plugin --enable-gol
d --with-local-prefix=/cbuild/slaves/oort61/crosstool-ng/builds/arm-linux-gnueabihf-raspbian-li
nux/install/arm-linux-gnueabihf/libc --enable-c99 --enable-long-long
Thread model: posix
gcc version 4.7.2 20120731 (prerelease) (crosstool-NG linaro-1.13.1+bzr2458 - Linaro GCC 2012.08
)

But hey! I did that and the libs still don't work!

We're not done yet! So far, we've only done the basics.

In your raspberrypi folder, make a folder called rootfs.

Now you need to copy the entire /liband /usr directory to this newly created folder. I usually bring the rpi image up and copy it via rsync:

rsync -rl --delete-after --safe-links pi@192.168.1.PI:/{lib,usr} $HOME/raspberrypi/rootfs

where 192.168.1.PI is replaced by the IP of your Raspberry Pi.

Now, we need to write a cmake config file. Open ~/home/raspberrypi/pi.cmake in your favorite editor and insert the following:

SET(CMAKE_SYSTEM_NAME Linux)
SET(CMAKE_SYSTEM_VERSION 1)
SET(CMAKE_C_COMPILER $ENV{HOME}/raspberrypi/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian/bin/arm-linux-gnueabihf-gcc)
SET(CMAKE_CXX_COMPILER $ENV{HOME}/raspberrypi/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian/bin/arm-linux-gnueabihf-g++)
SET(CMAKE_FIND_ROOT_PATH $ENV{HOME}/raspberrypi/rootfs)
SET(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
SET(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
SET(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

Now you should be able to compile your cmake programs simply by adding this extra flag: -D CMAKE_TOOLCHAIN_FILE=$HOME/raspberrypi/pi.cmake.

Using a cmake hello world example:

git clone https://github.com/jameskbride/cmake-hello-world.git 
cd cmake-hello-world
mkdir build
cd build
cmake -D CMAKE_TOOLCHAIN_FILE=$HOME/raspberrypi/pi.cmake ../
make
scp CMakeHelloWorld pi@192.168.1.PI:/home/pi/
ssh pi@192.168.1.PI ./CMakeHelloWorld

Problems cross compiling Qt 4.7 from source for ARM

{standard input}:1294: Error: selected processor does not support Thumb mode 'swp r6,r4,[r3]'

Why is the compiler complaining that the thumb mode is not supported?

Note, the compiler is complaining about the swp instruction not being available for thumb mode. Your CPU supports thumb, thumb2, and ARM. The Cortex series deprecates the use of swp and prefers ldrex/strex pairs.

Any thoughts on what went wrong and how to fix this?

You need to get gcc to define __ARM_ARCH_7__; this is done with either -mcpu=cortex-a8 or the combination -mtune=cortex-a8 and -march=armv7-a or what ever you like depending on how many types of boards you want Qt to run on.

In detail, see qatomic_arm.h for where a sub-file is selected. You have a very generic ARM selected (I guess), so you get qatomic_armv5.hNote1 where you can see the code around line 125. The right file for your CPU is qatomic_armv7.h, which mainly just includes qatomic_armv6.h. In this file you can find ldrex/strex which is the wholesome goodness that your gcc is requesting.

I also suggest you do not compile with -fast. There is another question where the OP says this solved his issue; but I think this is different.

You can try to pass -armfpa to configure. ./configure -embedded arm --help is useful. configure appears to have selected NEON, so it seems to know you have a more advanced CPU (there is no NEON on an armv5, but this maybe a fault of configure).

For certain, you don't want the swp code and the ldrex/strex is preferred for your system, even if swp could somehow work. I would at least resolve this. Alter the -xplatform qws/linux-am335x-g++ to update -mcpu or possibly pass an explicit -D__ARM_ARCH_7__. You can get a list of defines with arm-gcc -mcpu=cortex-a8 -dM -E - < /dev/null, to verify that the __ARM_ARCH_7__ is being defined. It looks like it is moc failing, so maybe the -D__ARM_ARCH_7_ solution will be needed.

You might also try to alter -mthumb in the compiler option. It is probably best to use -mcpu=cortex-a8 and -mthumb for your system, if you can get that to compile/build. Omitting -mthumb will make the code slightly larger. You might also try -Os. For some reason, I have huge builds with other optimizations and more recent gcc versions. It appears to be due to some C++ feature as normal 'C' doesn't behave this way; but this may just be my compiler. I looked and believe it is the exception tables, but I never confirmed anything and moved on. I am sure you are aware of how long Qt takes to compile.

Note1: The qatomic_armv5.h code is fairly confused and newer gcc or binutils will choke even when this is the correct file to use.

 asm volatile("swpb %0,%2,[%3]"
: "=&r"(ret), "=m" (*ptr)
: "r"(newval), "r"(ptr)
: "cc", "memory");

This specifies some inline assembler parameters which are never used. Not to mention the condition codes are not used, etc.

asm volatile("swpb %0,%1,[%2]"
: "=r"(ret)
: "0"(newval), "r"(ptr)
: "memory");

will compile with newer gcc and binutils. It also uses less registers and is optimal for the way Qt is currently using it; there maybe cases where ret needs to be preserved to compare to newval but it is just a user space spin lock currently.

The bracket [x] is a memory operand register and must be different than the other two parameters for a valid swp. I believe the first form was used to stop %0 from being the same as %3. The 2nd form avoids this by making %0 and %1 the same, so %2 must be different.



Related Topics



Leave a reply



Submit