Force Linux to Use Only Memory Over 4G

Force Linux to use only memory over 4G?

/usr/src/linux/Documentation/kernel-parameters.txt

        memmap=exactmap [KNL,X86] Enable setting of an exact
E820 memory map, as specified by the user.
Such memmap=exactmap lines can be constructed based on
BIOS output or other requirements. See the memmap=nn@ss
option description.

memmap=nn[KMG]@ss[KMG]
[KNL] Force usage of a specific region of memory
Region of memory to be used, from ss to ss+nn.

memmap=nn[KMG]#ss[KMG]
[KNL,ACPI] Mark specific memory as ACPI data.
Region of memory to be used, from ss to ss+nn.

memmap=nn[KMG]$ss[KMG]
[KNL,ACPI] Mark specific memory as reserved.
Region of memory to be used, from ss to ss+nn.
Example: Exclude memory from 0x18690000-0x1869ffff
memmap=64K$0x18690000
or
memmap=0x10000$0x18690000

If you add memmap=4G$0 to the kernel's boot parameters, the lower 4GB of physical memory will no longer be accessible. Also, your system will no longer boot... but some variation hereof (memmap=3584M$512M?) may allow for enough memory below 4GB for the system to boot but not enough that your driver's DMA buffers will be allocated there.

Force memory allocation to allocate from higher address ( 4GB) on 64-bit Linux

I don't understand why you want to do that (avoiding mmap giving some address in the first four gigabytes).

Hoever, you could, very early in your program -e.g. start of main, or even some constructor function- call mmap(2) with MAP_FIXED and MAP_NORESERVE on several memory segments to achieve your goal; so you would ensure that all the address space below 4G would be "filled" -either by pre-existing segments of your programs, or by your such calls to mmap.

However, your library (which could be indirectly dlopen-ed) could be started much after the program.

Once the first four gigabytes are used in the address spaces, most ordinary mmap calls (those done by malloc for example) would go outside.

Of course, you should mmap at some time before the first malloc (which would probably call mmap or sbrk); and you should take care of the existing memory segments (perhaps you can get them by parsing /proc/self/maps), because you need to avoid them in your mmap MAP_FIXED|MAP_NORESERVE.

And you could also define your own malloc. Perhaps you could mmap with MAP_NORESERVE a huge region (e.g. a terabyte), and have your own malloc using only address inside (by mmap-ing again there).

I think you are trying to solve the wrong problem. Doing what I suggest could be tricky... I see no valid reason to avoid addresses in the first 4 Gbytes.

BTW, a good tool to find memory leaks on Linux is valgrind.

How does the linux kernel manage less than 1GB physical memory?

Not all virtual (linear) addresses must be mapped to anything. If the code accesses unmapped page, the page fault is risen.

The physical page can be mapped to several virtual addresses simultaneously.

In the 4 GB virtual memory there are 2 sections: 0x0... 0xbfffffff - is process virtual memory and 0xc0000000 .. 0xffffffff is a kernel virtual memory.

  • How can the kernel map 896 MB from only 512 MB ?

It maps up to 896 MB. So, if you have only 512, there will be only 512 MB mapped.

If your physical memory is in 0x00000000 to 0x20000000, it will be mapped for direct kernel access to virtual addresses 0xC0000000 to 0xE0000000 (linear mapping).

  • What about user mode processes in this situation?

Phys memory for user processes will be mapped (not sequentially but rather random page-to-page mapping) to virtual addresses 0x0 .... 0xc0000000. This mapping will be the second mapping for pages from 0..896MB. The pages will be taken from free page lists.

  • Where are user mode processes in phys RAM?

Anywhere.

  • Every article explains only the situation, when you've installed 4 GB of memory and the

No. Every article explains how 4 Gb of virtual address space is mapped. The size of virtual memory is always 4 GB (for 32-bit machine without memory extensions like PAE/PSE/etc for x86)

As stated in 8.1.3. Memory Zones of the book Linux Kernel Development by Robert Love (I use third edition), there are several zones of physical memory:

  • ZONE_DMA - Contains page frames of memory below 16 MB
  • ZONE_NORMAL - Contains page frames of memory at and above 16 MB and below 896 MB
  • ZONE_HIGHMEM - Contains page frames of memory at and above 896 MB

So, if you have 512 MB, your ZONE_HIGHMEM will be empty, and ZONE_NORMAL will have 496 MB of physical memory mapped.

Also, take a look to 2.5.5.2. Final kernel Page Table when RAM size is less than 896 MB section of the book. It is about case, when you have less memory than 896 MB.

Also, for ARM there is some description of virtual memory layout: http://www.mjmwired.net/kernel/Documentation/arm/memory.txt

The line 63 PAGE_OFFSET high_memory-1 is the direct mapped part of memory

How to 'malloc' within first 4GB on x86_64

It is not possible, unless you code your own implementation of malloc (or dive into the implementation details of some existing malloc then change it to suit your needs).

Most malloc-s implementations are using the system mmap (or sbrk) syscalls (see e.g. syscalls(2) on Linux, and memory(3) for MacOSX), and these are giving some arbitrary memory addresses (e.g. because of ASLR, which is very useful).

PS. On Linux, you might use mmap(2) with MAP_NORESERVE or MAP_32BIT, but MacOSX mmap(2) does not seem to have them.

Virtual Memory Usage from Java under Linux, too much memory used

This has been a long-standing complaint with Java, but it's largely meaningless, and usually based on looking at the wrong information. The usual phrasing is something like "Hello World on Java takes 10 megabytes! Why does it need that?" Well, here's a way to make Hello World on a 64-bit JVM claim to take over 4 gigabytes ... at least by one form of measurement.


java -Xms1024m -Xmx4096m com.example.Hello

Different Ways to Measure Memory

On Linux, the top command gives you several different numbers for memory. Here's what it says about the Hello World example:


PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2120 kgregory 20 0 4373m 15m 7152 S 0 0.2 0:00.10 java
  • VIRT is the virtual memory space: the sum of everything in the virtual memory map (see below). It is largely meaningless, except when it isn't (see below).
  • RES is the resident set size: the number of pages that are currently resident in RAM. In almost all cases, this is the only number that you should use when saying "too big." But it's still not a very good number, especially when talking about Java.
  • SHR is the amount of resident memory that is shared with other processes. For a Java process, this is typically limited to shared libraries and memory-mapped JARfiles. In this example, I only had one Java process running, so I suspect that the 7k is a result of libraries used by the OS.
  • SWAP isn't turned on by default, and isn't shown here. It indicates the amount of virtual memory that is currently resident on disk, whether or not it's actually in the swap space. The OS is very good about keeping active pages in RAM, and the only cures for swapping are (1) buy more memory, or (2) reduce the number of processes, so it's best to ignore this number.

The situation for Windows Task Manager is a bit more complicated. Under Windows XP, there are "Memory Usage" and "Virtual Memory Size" columns, but the official documentation is silent on what they mean. Windows Vista and Windows 7 add more columns, and they're actually documented. Of these, the "Working Set" measurement is the most useful; it roughly corresponds to the sum of RES and SHR on Linux.

Understanding the Virtual Memory Map

The virtual memory consumed by a process is the total of everything that's in the process memory map. This includes data (eg, the Java heap), but also all of the shared libraries and memory-mapped files used by the program. On Linux, you can use the pmap command to see all of the things mapped into the process space (from here on out I'm only going to refer to Linux, because it's what I use; I'm sure there are equivalent tools for Windows). Here's an excerpt from the memory map of the "Hello World" program; the entire memory map is over 100 lines long, and it's not unusual to have a thousand-line list.


0000000040000000 36K r-x-- /usr/local/java/jdk-1.6-x64/bin/java
0000000040108000 8K rwx-- /usr/local/java/jdk-1.6-x64/bin/java
0000000040eba000 676K rwx-- [ anon ]
00000006fae00000 21248K rwx-- [ anon ]
00000006fc2c0000 62720K rwx-- [ anon ]
0000000700000000 699072K rwx-- [ anon ]
000000072aab0000 2097152K rwx-- [ anon ]
00000007aaab0000 349504K rwx-- [ anon ]
00000007c0000000 1048576K rwx-- [ anon ]
...
00007fa1ed00d000 1652K r-xs- /usr/local/java/jdk-1.6-x64/jre/lib/rt.jar
...
00007fa1ed1d3000 1024K rwx-- [ anon ]
00007fa1ed2d3000 4K ----- [ anon ]
00007fa1ed2d4000 1024K rwx-- [ anon ]
00007fa1ed3d4000 4K ----- [ anon ]
...
00007fa1f20d3000 164K r-x-- /usr/local/java/jdk-1.6-x64/jre/lib/amd64/libjava.so
00007fa1f20fc000 1020K ----- /usr/local/java/jdk-1.6-x64/jre/lib/amd64/libjava.so
00007fa1f21fb000 28K rwx-- /usr/local/java/jdk-1.6-x64/jre/lib/amd64/libjava.so
...
00007fa1f34aa000 1576K r-x-- /lib/x86_64-linux-gnu/libc-2.13.so
00007fa1f3634000 2044K ----- /lib/x86_64-linux-gnu/libc-2.13.so
00007fa1f3833000 16K r-x-- /lib/x86_64-linux-gnu/libc-2.13.so
00007fa1f3837000 4K rwx-- /lib/x86_64-linux-gnu/libc-2.13.so
...

A quick explanation of the format: each row starts with the virtual memory address of the segment. This is followed by the segment size, permissions, and the source of the segment. This last item is either a file or "anon", which indicates a block of memory allocated via mmap.

Starting from the top, we have

  • The JVM loader (ie, the program that gets run when you type java). This is very small; all it does is load in the shared libraries where the real JVM code is stored.
  • A bunch of anon blocks holding the Java heap and internal data. This is a Sun JVM, so the heap is broken into multiple generations, each of which is its own memory block. Note that the JVM allocates virtual memory space based on the -Xmx value; this allows it to have a contiguous heap. The -Xms value is used internally to say how much of the heap is "in use" when the program starts, and to trigger garbage collection as that limit is approached.
  • A memory-mapped JARfile, in this case the file that holds the "JDK classes." When you memory-map a JAR, you can access the files within it very efficiently (versus reading it from the start each time). The Sun JVM will memory-map all JARs on the classpath; if your application code needs to access a JAR, you can also memory-map it.
  • Per-thread data for two threads. The 1M block is the thread stack. I didn't have a good explanation for the 4k block, but @ericsoe identified it as a "guard block": it does not have read/write permissions, so will cause a segment fault if accessed, and the JVM catches that and translates it to a StackOverFlowError. For a real app, you will see dozens if not hundreds of these entries repeated through the memory map.
  • One of the shared libraries that holds the actual JVM code. There are several of these.
  • The shared library for the C standard library. This is just one of many things that the JVM loads that are not strictly part of Java.

The shared libraries are particularly interesting: each shared library has at least two segments: a read-only segment containing the library code, and a read-write segment that contains global per-process data for the library (I don't know what the segment with no permissions is; I've only seen it on x64 Linux). The read-only portion of the library can be shared between all processes that use the library; for example, libc has 1.5M of virtual memory space that can be shared.

When is Virtual Memory Size Important?

The virtual memory map contains a lot of stuff. Some of it is read-only, some of it is shared, and some of it is allocated but never touched (eg, almost all of the 4Gb of heap in this example). But the operating system is smart enough to only load what it needs, so the virtual memory size is largely irrelevant.

Where virtual memory size is important is if you're running on a 32-bit operating system, where you can only allocate 2Gb (or, in some cases, 3Gb) of process address space. In that case you're dealing with a scarce resource, and might have to make tradeoffs, such as reducing your heap size in order to memory-map a large file or create lots of threads.

But, given that 64-bit machines are ubiquitous, I don't think it will be long before Virtual Memory Size is a completely irrelevant statistic.

When is Resident Set Size Important?

Resident Set size is that portion of the virtual memory space that is actually in RAM. If your RSS grows to be a significant portion of your total physical memory, it might be time to start worrying. If your RSS grows to take up all your physical memory, and your system starts swapping, it's well past time to start worrying.

But RSS is also misleading, especially on a lightly loaded machine. The operating system doesn't expend a lot of effort to reclaiming the pages used by a process. There's little benefit to be gained by doing so, and the potential for an expensive page fault if the process touches the page in the future. As a result, the RSS statistic may include lots of pages that aren't in active use.

Bottom Line

Unless you're swapping, don't get overly concerned about what the various memory statistics are telling you. With the caveat that an ever-growing RSS may indicate some sort of memory leak.

With a Java program, it's far more important to pay attention to what's happening in the heap. The total amount of space consumed is important, and there are some steps that you can take to reduce that. More important is the amount of time that you spend in garbage collection, and which parts of the heap are getting collected.

Accessing the disk (ie, a database) is expensive, and memory is cheap. If you can trade one for the other, do so.

Any way to allocate physical memory above 4GB on Vista x64?

Try MmAllocateContiguousMemorySpecifyCache.



Related Topics



Leave a reply



Submit