Switch Statement for Imported Ns_Options (Rawoptionsettype) in Swift

Switch statement for imported NS_OPTIONS (RawOptionSetType) in Swift?

I was frustrated enough about this problem that I wrote a Bitmask<T> class that can handle these use cases. The code is up on Github: brynbellomy/SwiftBitmask

It allows you to do stuff like this with any kind of object as your underlying type (here I'm using an enum):

enum MonsterAttributes : IBitmaskRepresentable, IAutoBitmaskable {
case Big, Ugly, Scary

static var autoBitmaskValues : [MonsterAttributes] = [.Big, .Ugly, .Scary,]
var bitmaskValue: UInt16 { return AutoBitmask..autoBitmaskValueFor(self) }
init(bitmaskValue: UInt16) { self = AutoBitmask.autoValueFromBitmask(bitmaskValue) }
}

// various ways to initialize
let option : MonsterAttributes = .Ugly

let bitmaskOfOption = Bitmask(option)
let anotherBitmaskOfOption = |MonsterAttributes.Ugly // same as bitmaskOfOption

let orWithVar = option | .Big // == Bitmask<MonsterAttributes> with a bitmaskValue of 1 | 2
let simpleOr = MonsterAttributes.Big | .Ugly // == Bitmask<MonsterAttributes> with a bitmaskValue of 1 | 2

// getting the raw integral bitmask value
let simpleOrValue = simpleOr.bitmaskValue // == UInt16(1 | 2)
let orValue = (MonsterAttributes.Big | .Ugly).bitmaskValue // == UInt16(1 | 2)

// implements BooleanType
if simpleOr & .Ugly { /* this code will execute */ }

// supports pattern matching operator
if simpleOr ~= .Ugly { /* this code will execute */ }
if simpleOr ~= (.Ugly | .Scary) { /* this code will execute */ }

... and all you have to do is implement a one-property protocol.

I'm really curious if anyone has any feedback on or ideas for the code, so please leave an issue in the queue if you think of anything!

How to create NS_OPTIONS-style bitmask enumerations in Swift?

Swift 3.0

Almost identical to Swift 2.0. OptionSetType was renamed to OptionSet and enums are written lower case by convention.

struct MyOptions : OptionSet {
let rawValue: Int

static let firstOption = MyOptions(rawValue: 1 << 0)
static let secondOption = MyOptions(rawValue: 1 << 1)
static let thirdOption = MyOptions(rawValue: 1 << 2)
}

Instead of providing a none option, the Swift 3 recommendation is to simply use an empty array literal:

let noOptions: MyOptions = []

Other usage:

let singleOption = MyOptions.firstOption
let multipleOptions: MyOptions = [.firstOption, .secondOption]
if multipleOptions.contains(.secondOption) {
print("multipleOptions has SecondOption")
}
let allOptions = MyOptions(rawValue: 7)
if allOptions.contains(.thirdOption) {
print("allOptions has ThirdOption")
}

Swift 2.0

In Swift 2.0, protocol extensions take care of most of the boilerplate for these, which are now imported as a struct that conforms to OptionSetType. (RawOptionSetType has disappeared as of Swift 2 beta 2.) The declaration is far simpler:

struct MyOptions : OptionSetType {
let rawValue: Int

static let None = MyOptions(rawValue: 0)
static let FirstOption = MyOptions(rawValue: 1 << 0)
static let SecondOption = MyOptions(rawValue: 1 << 1)
static let ThirdOption = MyOptions(rawValue: 1 << 2)
}

Now we can use set-based semantics with MyOptions:

let singleOption = MyOptions.FirstOption
let multipleOptions: MyOptions = [.FirstOption, .SecondOption]
if multipleOptions.contains(.SecondOption) {
print("multipleOptions has SecondOption")
}
let allOptions = MyOptions(rawValue: 7)
if allOptions.contains(.ThirdOption) {
print("allOptions has ThirdOption")
}

Swift 1.2

Looking at the Objective-C options that were imported by Swift (UIViewAutoresizing, for example), we can see that options are declared as a struct that conforms to protocol RawOptionSetType, which in turn conforms to _RawOptionSetType, Equatable, RawRepresentable, BitwiseOperationsType, and NilLiteralConvertible. We can create our own like this:

struct MyOptions : RawOptionSetType {
typealias RawValue = UInt
private var value: UInt = 0
init(_ value: UInt) { self.value = value }
init(rawValue value: UInt) { self.value = value }
init(nilLiteral: ()) { self.value = 0 }
static var allZeros: MyOptions { return self(0) }
static func fromMask(raw: UInt) -> MyOptions { return self(raw) }
var rawValue: UInt { return self.value }

static var None: MyOptions { return self(0) }
static var FirstOption: MyOptions { return self(1 << 0) }
static var SecondOption: MyOptions { return self(1 << 1) }
static var ThirdOption: MyOptions { return self(1 << 2) }
}

Now we can treat this new option set, MyOptions, just like described in Apple's documentation: you can use enum-like syntax:

let opt1 = MyOptions.FirstOption
let opt2: MyOptions = .SecondOption
let opt3 = MyOptions(4)

And it also behaves like we'd expect options to behave:

let singleOption = MyOptions.FirstOption
let multipleOptions: MyOptions = singleOption | .SecondOption
if multipleOptions & .SecondOption != nil { // see note
println("multipleOptions has SecondOption")
}
let allOptions = MyOptions.fromMask(7) // aka .fromMask(0b111)
if allOptions & .ThirdOption != nil {
println("allOptions has ThirdOption")
}

I've built a generator to create a Swift option set without all the find/replacing.

Latest: Modifications for Swift 1.1 beta 3.

Is there a better way to check active notification settings?

Looks like the only thing you can do to improve the code is make it more concise.

func printUserNotificationSettings() {
println("Notification Settings:")
let notificationSettingsTypes = UIApplication.sharedApplication().currentUserNotificationSettings().types
let badgeOn = (notificationSettingsTypes & .Badge) != nil
let soundOn = (notificationSettingsTypes & .Sound) != nil
let alertOn = (notificationSettingsTypes & .Alert) != nil

println("\tBadge? \(badgeOn)")
println("\tSound? \(soundOn)")
println("\tAlert? \(alertOn)")
}

UIUserNotificationType implements RawOptionSetType which is the swift mapping from NS_OPTIONS in Objective C code. In earlier betas of Xcode, these objects also implemented BooleanType, which would have allowed you to write this code a little more concisely, but that seems to have been removed prior to release.

Also, searching around, the most common way to do the check is != nil so I have included that modification as well, it seems to improve the readability a bit.

Here is a pretty robust StackOverflow post on the topic: Switch statement for imported NS_OPTIONS (RawOptionSetType) in Swift?

And another great article on the background of RawOptionSetType: http://nshipster.com/rawoptionsettype/

MCOMessageFlag in Swift

As Dinh Viêt Hoà suggested in a comment, the fetchOperation request headers needed to include the flags.

let requestKind = MCOIMAPMessagesRequestKind.Headers | MCOIMAPMessagesRequestKind.Flags
let uids = MCOIndexSet(range: MCORangeMake(1, UINT64_MAX))
let folder = "INBOX"

let fetchOperation = self.imapSession.fetchMessagesOperationWithFolder(folder, requestKind: requestKind, uids: uids)

Declaring and using a bit field enum in Swift

Updated for Swift 2/3

Since swift 2, a new solution has been added as "raw option set" (see: Documentation), which is essentially the same as my original response, but using structs that allow arbitrary values.

This is the original question rewritten as an OptionSet:

struct MyOptions: OptionSet
{
let rawValue: UInt8

static let One = MyOptions(rawValue: 0x01)
static let Two = MyOptions(rawValue: 0x02)
static let Four = MyOptions(rawValue: 0x04)
static let Eight = MyOptions(rawValue: 0x08)
}

let m1 : MyOptions = .One

let combined : MyOptions = [MyOptions.One, MyOptions.Four]

Combining with new values can be done exactly as Set operations (thus the OptionSet part), .union, likewise:

m1.union(.Four).rawValue // Produces 5

Same as doing One | Four in its C-equivalent. As for One & Mask != 0, can be specified as a non-empty intersection

// Equivalent of A & B != 0
if !m1.intersection(combined).isEmpty
{
// m1 belongs is in combined
}

Weirdly enough, most of the C-style bitwise enums have been converted to their OptionSet equivalent on Swift 3, but Calendar.Compontents does away with a Set<Enum>:

let compontentKeys : Set<Calendar.Component> = [.day, .month, .year]

Whereas the original NSCalendarUnit was a bitwise enum. So both approaches are usable (thus the original response remains valid)

Original Response

I think the best thing to do, is to simply avoid the bitmask syntax until the Swift devs figure out a better way.

Most of the times, the problem can be solved using an enum and and a Set

enum Options
{
case A, B, C, D
}

var options = Set<Options>(arrayLiteral: .A, .D)

An and check (options & .A) could be defined as:

options.contains(.A)

Or for multiple "flags" could be:

options.isSupersetOf(Set<Options>(arrayLiteral: .A, .D))

Adding new flags (options |= .C):

options.insert(.C)

This also allows for using all the new stuff with enums: custom types, pattern matching with switch case, etc.

Of course, it doesn't have the efficiency of bitwise operations, nor it would be compatible with low level things (like sending bluetooth commands), but it's useful for UI elements that the overhead of the UI outweighs the cost of the Set operations.



Related Topics



Leave a reply



Submit