How Does Database Indexing Work

How does database indexing work?

Why is it needed?

When data is stored on disk-based storage devices, it is stored as blocks of data. These blocks are accessed in their entirety, making them the atomic disk access operation. Disk blocks are structured in much the same way as linked lists; both contain a section for data, a pointer to the location of the next node (or block), and both need not be stored contiguously.

Due to the fact that a number of records can only be sorted on one field, we can state that searching on a field that isn’t sorted requires a Linear Search which requires (N+1)/2 block accesses (on average), where N is the number of blocks that the table spans. If that field is a non-key field (i.e. doesn’t contain unique entries) then the entire tablespace must be searched at N block accesses.

Whereas with a sorted field, a Binary Search may be used, which has log2 N block accesses. Also since the data is sorted given a non-key field, the rest of the table doesn’t need to be searched for duplicate values, once a higher value is found. Thus the performance increase is substantial.

What is indexing?

Indexing is a way of sorting a number of records on multiple fields. Creating an index on a field in a table creates another data structure which holds the field value, and a pointer to the record it relates to. This index structure is then sorted, allowing Binary Searches to be performed on it.

The downside to indexing is that these indices require additional space on the disk since the indices are stored together in a table using the MyISAM engine, this file can quickly reach the size limits of the underlying file system if many fields within the same table are indexed.

How does it work?

Firstly, let’s outline a sample database table schema;


Field name Data type Size on disk
id (Primary key) Unsigned INT 4 bytes
firstName Char(50) 50 bytes
lastName Char(50) 50 bytes
emailAddress Char(100) 100 bytes

Note: char was used in place of varchar to allow for an accurate size on disk value.
This sample database contains five million rows and is unindexed. The performance of several queries will now be analyzed. These are a query using the id (a sorted key field) and one using the firstName (a non-key unsorted field).

Example 1 - sorted vs unsorted fields

Given our sample database of r = 5,000,000 records of a fixed size giving a record length of R = 204 bytes and they are stored in a table using the MyISAM engine which is using the default block size B = 1,024 bytes. The blocking factor of the table would be bfr = (B/R) = 1024/204 = 5 records per disk block. The total number of blocks required to hold the table is N = (r/bfr) = 5000000/5 = 1,000,000 blocks.

A linear search on the id field would require an average of N/2 = 500,000 block accesses to find a value, given that the id field is a key field. But since the id field is also sorted, a binary search can be conducted requiring an average of log2 1000000 = 19.93 = 20 block accesses. Instantly we can see this is a drastic improvement.

Now the firstName field is neither sorted nor a key field, so a binary search is impossible, nor are the values unique, and thus the table will require searching to the end for an exact N = 1,000,000 block accesses. It is this situation that indexing aims to correct.

Given that an index record contains only the indexed field and a pointer to the original record, it stands to reason that it will be smaller than the multi-field record that it points to. So the index itself requires fewer disk blocks than the original table, which therefore requires fewer block accesses to iterate through. The schema for an index on the firstName field is outlined below;


Field name Data type Size on disk
firstName Char(50) 50 bytes
(record pointer) Special 4 bytes

Note: Pointers in MySQL are 2, 3, 4 or 5 bytes in length depending on the size of the table.

Example 2 - indexing

Given our sample database of r = 5,000,000 records with an index record length of R = 54 bytes and using the default block size B = 1,024 bytes. The blocking factor of the index would be bfr = (B/R) = 1024/54 = 18 records per disk block. The total number of blocks required to hold the index is N = (r/bfr) = 5000000/18 = 277,778 blocks.

Now a search using the firstName field can utilize the index to increase performance. This allows for a binary search of the index with an average of log2 277778 = 18.08 = 19 block accesses. To find the address of the actual record, which requires a further block access to read, bringing the total to 19 + 1 = 20 block accesses, a far cry from the 1,000,000 block accesses required to find a firstName match in the non-indexed table.

When should it be used?

Given that creating an index requires additional disk space (277,778 blocks extra from the above example, a ~28% increase), and that too many indices can cause issues arising from the file systems size limits, careful thought must be used to select the correct fields to index.

Since indices are only used to speed up the searching for a matching field within the records, it stands to reason that indexing fields used only for output would be simply a waste of disk space and processing time when doing an insert or delete operation, and thus should be avoided. Also given the nature of a binary search, the cardinality or uniqueness of the data is important. Indexing on a field with a cardinality of 2 would split the data in half, whereas a cardinality of 1,000 would return approximately 1,000 records. With such a low cardinality the effectiveness is reduced to a linear sort, and the query optimizer will avoid using the index if the cardinality is less than 30% of the record number, effectively making the index a waste of space.

How do MySQL indexes work?

Basically an index on a table works like an index in a book (that's where the name came from):

Let's say you have a book about databases and you want to find some information about, say, storage. Without an index (assuming no other aid, such as a table of contents) you'd have to go through the pages one by one, until you found the topic (that's a full table scan).
On the other hand, an index has a list of keywords, so you'd consult the index and see that storage is mentioned on pages 113-120,231 and 354. Then you could flip to those pages directly, without searching (that's a search with an index, somewhat faster).

Of course, how useful the index will be, depends on many things - a few examples, using the simile above:

  • if you had a book on databases and indexed the word "database", you'd see that it's mentioned on pages 1-59,61-290, and 292 to 400. In such case, the index is not much help and it might be faster to go through the pages one by one (in a database, this is "poor selectivity").
  • For a 10-page book, it makes no sense to make an index, as you may end up with a 10-page book prefixed by a 5-page index, which is just silly - just scan the 10 pages and be done with it.
  • The index also needs to be useful - there's generally no point to index e.g. the frequency of the letter "L" per page.

What is an index in SQL?

An index is used to speed up searching in the database. MySQL have some good documentation on the subject (which is relevant for other SQL servers as well):
http://dev.mysql.com/doc/refman/5.0/en/mysql-indexes.html

An index can be used to efficiently find all rows matching some column in your query and then walk through only that subset of the table to find exact matches. If you don't have indexes on any column in the WHERE clause, the SQL server has to walk through the whole table and check every row to see if it matches, which may be a slow operation on big tables.

The index can also be a UNIQUE index, which means that you cannot have duplicate values in that column, or a PRIMARY KEY which in some storage engines defines where in the database file the value is stored.

In MySQL you can use EXPLAIN in front of your SELECT statement to see if your query will make use of any index. This is a good start for troubleshooting performance problems. Read more here:
http://dev.mysql.com/doc/refman/5.0/en/explain.html

How SQL Server indexing works

How It Works

The database takes the columns specified in a CREATE INDEX command and sorts the values into a special data structure known as a B-tree. A B-tree structure supports fast searches with a minimum amount of disk reads, allowing the database engine to quickly find the starting and stopping points for the query we are using.


For more info, check THIS!



Related Topics



Leave a reply



Submit