Structs Versus Classes

When should you use a class vs a struct in C++?

The differences between a class and a struct in C++ is:

  • struct members and base classes/structs are public by default.
  • class members and base classes/struts are private by default.

Both classes and structs can have a mixture of public, protected and private members, can use inheritance and can have member functions.

I would recommend you:

  • use struct for plain-old-data structures without any class-like features;
  • use class when you make use of features such as private or protected members, non-default constructors and operators, etc.

C/C++ Struct vs Class

In C++, structs and classes are pretty much the same; the only difference is that where access modifiers (for member variables, methods, and base classes) in classes default to private, access modifiers in structs default to public.

However, in C, a struct is just an aggregate collection of (public) data, and has no other class-like features: no methods, no constructor, no base classes, etc. Although C++ inherited the keyword, it extended the semantics. (This, however, is why things default to public in structs—a struct written like a C struct behaves like one.)

While it's possible to fake some OOP in C—for instance, defining functions which all take a pointer to a struct as their first parameter, or occasionally coercing structs with the same first few fields to be "sub/superclasses"—it's always sort of bolted on, and isn't really part of the language.

What are the differences between struct and class in C++?

You forget the tricky 2nd difference between classes and structs.

Quoth the standard (§11.2.2 in C++98 through C++11):

In absence of an access-specifier
for a base class, public is assumed
when the derived class is declared
struct and private is assumed when the class is declared class.

And just for completeness' sake, the more widely known difference between class and struct is defined in (11.2):

Member of a class defined with the
keyword class are private by
default. Members of a class defined
with the keywords struct or union
are public by default.

Additional difference: the keyword class can be used to declare template parameters, while the struct keyword cannot be so used.

What's the difference between struct and class in .NET?

In .NET, there are two categories of types, reference types and value types.

Structs are value types and classes are reference types.

The general difference is that a reference type lives on the heap, and a value type lives inline, that is, wherever it is your variable or field is defined.

A variable containing a value type contains the entire value type value. For a struct, that means that the variable contains the entire struct, with all its fields.

A variable containing a reference type contains a pointer, or a reference to somewhere else in memory where the actual value resides.

This has one benefit, to begin with:

  • value types always contains a value
  • reference types can contain a null-reference, meaning that they don't refer to anything at all at the moment

Internally, reference types are implemented as pointers, and knowing that, and knowing how variable assignment works, there are other behavioral patterns:

  • copying the contents of a value type variable into another variable, copies the entire contents into the new variable, making the two distinct. In other words, after the copy, changes to one won't affect the other
  • copying the contents of a reference type variable into another variable, copies the reference, which means you now have two references to the same somewhere else storage of the actual data. In other words, after the copy, changing the data in one reference will appear to affect the other as well, but only because you're really just looking at the same data both places

When you declare variables or fields, here's how the two types differ:

  • variable: value type lives on the stack, reference type lives on the stack as a pointer to somewhere in heap memory where the actual memory lives (though note Eric Lipperts article series: The Stack Is An Implementation Detail.)
  • class/struct-field: value type lives completely inside the type, reference type lives inside the type as a pointer to somewhere in heap memory where the actual memory lives.

Performances of Structs vs Classes

On runtime level there is no difference between structs and classes in C++ at all.
So it doesn't make any performance difference whether you use struct A or class A in your code.

Other thing, is using some features -- like, constructors, destructors and virtual functions, -- could have some performance penalties (but if you use them you probably need them anyway). But you can with equal success use them both inside your class or struct.

In this document you can read about other performance-related subtleties of C++.

Structs vs classes in C++

Technically, the only difference between the two is that structs are public: by default and classes are private:

Other than that, there is no technical difference.

struct vs class then becomes a purely expressive nuance of the language.

Usually, you avoid putting complicated methods in a struct, and most of the time structs data members will stay public. In a class you want to enforce strong encapsulation.

struct = data is public, with very simple helper methods

class = strongly encapsulated, data is modified / accessed only through methods

structure vs class in swift language

Here's an example with a class. Note how when the name is changed, the instance referenced by both variables is updated. Bob is now Sue, everywhere that Bob was ever referenced.

class SomeClass {
var name: String
init(name: String) {
self.name = name
}
}

var aClass = SomeClass(name: "Bob")
var bClass = aClass // aClass and bClass now reference the same instance!
bClass.name = "Sue"

println(aClass.name) // "Sue"
println(bClass.name) // "Sue"

And now with a struct we see that the values are copied and each variable keeps it's own set of values. When we set the name to Sue, the Bob struct in aStruct does not get changed.

struct SomeStruct {
var name: String
init(name: String) {
self.name = name
}
}

var aStruct = SomeStruct(name: "Bob")
var bStruct = aStruct // aStruct and bStruct are two structs with the same value!
bStruct.name = "Sue"

println(aStruct.name) // "Bob"
println(bStruct.name) // "Sue"

So for representing a stateful complex entity, a class is awesome. But for values that are simply a measurement or bits of related data, a struct makes more sense so that you can easily copy them around and calculate with them or modify the values without fear of side effects.

Why Choose Struct Over Class?

According to the very popular WWDC 2015 talk Protocol Oriented Programming in Swift (video, transcript), Swift provides a number of features that make structs better than classes in many circumstances.

Structs are preferable if they are relatively small and copiable because copying is way safer than having multiple references to the same instance as happens with classes. This is especially important when passing around a variable to many classes and/or in a multithreaded environment. If you can always send a copy of your variable to other places, you never have to worry about that other place changing the value of your variable underneath you.

With Structs, there is much less need to worry about memory leaks or multiple threads racing to access/modify a single instance of a variable. (For the more technically minded, the exception to that is when capturing a struct inside a closure because then it is actually capturing a reference to the instance unless you explicitly mark it to be copied).

Classes can also become bloated because a class can only inherit from a single superclass. That encourages us to create huge superclasses that encompass many different abilities that are only loosely related. Using protocols, especially with protocol extensions where you can provide implementations to protocols, allows you to eliminate the need for classes to achieve this sort of behavior.

The talk lays out these scenarios where classes are preferred:

  • Copying or comparing instances doesn't make sense (e.g., Window)
  • Instance lifetime is tied to external effects (e.g., TemporaryFile)
  • Instances are just "sinks"--write-only conduits to external state (e.g.CGContext)

It implies that structs should be the default and classes should be a fallback.

On the other hand, The Swift Programming Language documentation is somewhat contradictory:

Structure instances are always passed by value, and class
instances are always passed by reference. This means that they are
suited to different kinds of tasks. As you consider the data
constructs and functionality that you need for a project, decide
whether each data construct should be defined as a class or as a
structure.

As a general guideline, consider creating a structure when one or more
of these conditions apply:

  • The structure’s primary purpose is to encapsulate a few relatively simple data values.
  • It is reasonable to expect that the encapsulated values will be copied rather than referenced when you assign or pass around an
    instance of that structure.
  • Any properties stored by the structure are themselves value types, which would also be expected to be copied rather than referenced.
  • The structure does not need to inherit properties or behavior from another existing type.

Examples of good candidates for structures include:

  • The size of a geometric shape, perhaps encapsulating a width property and a height property, both of type Double.
  • A way to refer to ranges within a series, perhaps encapsulating a start property and a length property, both of type Int.
  • A point in a 3D coordinate system, perhaps encapsulating x, y and z properties, each of type Double.

In all other cases, define a class, and create instances of that class
to be managed and passed by reference. In practice, this means that
most custom data constructs should be classes, not structures.

Here it is claiming that we should default to using classes and use structures only in specific circumstances. Ultimately, you need to understand the real world implication of value types vs. reference types and then you can make an informed decision about when to use structs or classes. Also, keep in mind that these concepts are always evolving and The Swift Programming Language documentation was written before the Protocol Oriented Programming talk was given.



Related Topics



Leave a reply



Submit