C# VS C - Big Performance Difference

C# vs C - Big performance difference

Since you never use 'root', the compiler may have been removing the call to optimize your method.

You could try to accumulate the square root values into an accumulator, print it out at the end of the method, and see what's going on.

Edit : see Jalf's answer below

c++ and c# speed compared

Why would you assume that jitted code is slower than native code? The only speed penalty would be the actual jitting, which only happens once (generally speaking). Given a program with a 30-second running time, we are talking about a minuscule portion of the total cost.

I think you may be confusing jitted code with interpreted code, which is compiled line-by-line. There's a pretty significant difference between the two.

As others have pointed out, you also need to run this in release mode; debug mode turns off most optimizations, so both versions will be slower than they should be (but by different amounts).

Edit - I should point out one other thing, which is that this line:

for (j = 2; j <= Math.Sqrt(i); j++)

Is incredibly inefficient and may interfere with the benchmarking. You should be calculating Math.Sqrt(i) outside of the inner loop. It's possible that this will slow down both versions by an equivalent amount, but I'm not sure, different compilers will perform different optimizations.

How much faster is C++ than C#?

There is no strict reason why a bytecode based language like C# or Java that has a JIT cannot be as fast as C++ code. However C++ code used to be significantly faster for a long time, and also today still is in many cases. This is mainly due to the more advanced JIT optimizations being complicated to implement, and the really cool ones are only arriving just now.

So C++ is faster, in many cases. But this is only part of the answer. The cases where C++ is actually faster, are highly optimized programs, where expert programmers thoroughly optimized the hell out of the code. This is not only very time consuming (and thus expensive), but also commonly leads to errors due to over-optimizations.

On the other hand, code in interpreted languages gets faster in later versions of the runtime (.NET CLR or Java VM), without you doing anything. And there are a lot of useful optimizations JIT compilers can do that are simply impossible in languages with pointers. Also, some argue that garbage collection should generally be as fast or faster as manual memory management, and in many cases it is. You can generally implement and achieve all of this in C++ or C, but it's going to be much more complicated and error prone.

As Donald Knuth said, "premature optimization is the root of all evil". If you really know for sure that your application will mostly consist of very performance critical arithmetic, and that it will be the bottleneck, and it's certainly going to be faster in C++, and you're sure that C++ won't conflict with your other requirements, go for C++. In any other case, concentrate on first implementing your application correctly in whatever language suits you best, then find performance bottlenecks if it runs too slow, and then think about how to optimize the code. In the worst case, you might need to call out to C code through a foreign function interface, so you'll still have the ability to write critical parts in lower level language.

Keep in mind that it's relatively easy to optimize a correct program, but much harder to correct an optimized program.

Giving actual percentages of speed advantages is impossible, it largely depends on your code. In many cases, the programming language implementation isn't even the bottleneck. Take the benchmarks at http://benchmarksgame.alioth.debian.org/ with a great deal of scepticism, as these largely test arithmetic code, which is most likely not similar to your code at all.

Is C# really slower than say C++?

Warning: The question you've asked is really pretty complex -- probably much more so than you realize. As a result, this is a really long answer.

From a purely theoretical viewpoint, there's probably a simple answer to this: there's (probably) nothing about C# that truly prevents it from being as fast as C++. Despite the theory, however, there are some practical reasons that it is slower at some things under some circumstances.

I'll consider three basic areas of differences: language features, virtual machine execution, and garbage collection. The latter two often go together, but can be independent, so I'll look at them separately.

Language Features

C++ places a great deal of emphasis on templates, and features in the template system that are largely intended to allow as much as possible to be done at compile time, so from the viewpoint of the program, they're "static." Template meta-programming allows completely arbitrary computations to be carried out at compile time (I.e., the template system is Turing complete). As such, essentially anything that doesn't depend on input from the user can be computed at compile time, so at runtime it's simply a constant. Input to this can, however, include things like type information, so a great deal of what you'd do via reflection at runtime in C# is normally done at compile time via template metaprogramming in C++. There is definitely a trade-off between runtime speed and versatility though -- what templates can do, they do statically, but they simply can't do everything reflection can.

The differences in language features mean that almost any attempt at comparing the two languages simply by transliterating some C# into C++ (or vice versa) is likely to produce results somewhere between meaningless and misleading (and the same would be true for most other pairs of languages as well). The simple fact is that for anything larger than a couple lines of code or so, almost nobody is at all likely to use the languages the same way (or close enough to the same way) that such a comparison tells you anything about how those languages work in real life.

Virtual Machine

Like almost any reasonably modern VM, Microsoft's for .NET can and will do JIT (aka "dynamic") compilation. This represents a number of trade-offs though.

Primarily, optimizing code (like most other optimization problems) is largely an NP-complete problem. For anything but a truly trivial/toy program, you're pretty nearly guaranteed you won't truly "optimize" the result (i.e., you won't find the true optimum) -- the optimizer will simply make the code better than it was previously. Quite a few optimizations that are well known, however, take a substantial amount of time (and, often, memory) to execute. With a JIT compiler, the user is waiting while the compiler runs. Most of the more expensive optimization techniques are ruled out. Static compilation has two advantages: first of all, if it's slow (e.g., building a large system) it's typically carried out on a server, and nobody spends time waiting for it. Second, an executable can be generated once, and used many times by many people. The first minimizes the cost of optimization; the second amortizes the much smaller cost over a much larger number of executions.

As mentioned in the original question (and many other web sites) JIT compilation does have the possibility of greater awareness of the target environment, which should (at least theoretically) offset this advantage. There's no question that this factor can offset at least part of the disadvantage of static compilation. For a few rather specific types of code and target environments, it can even outweigh the advantages of static compilation, sometimes fairly dramatically. At least in my testing and experience, however, this is fairly unusual. Target dependent optimizations mostly seem to either make fairly small differences, or can only be applied (automatically, anyway) to fairly specific types of problems. Obvious times this would happen would be if you were running a relatively old program on a modern machine. An old program written in C++ would probably have been compiled to 32-bit code, and would continue to use 32-bit code even on a modern 64-bit processor. A program written in C# would have been compiled to byte code, which the VM would then compile to 64-bit machine code. If this program derived a substantial benefit from running as 64-bit code, that could give a substantial advantage. For a short time when 64-bit processors were fairly new, this happened a fair amount. Recent code that's likely to benefit from a 64-bit processor will usually be available compiled statically into 64-bit code though.

Using a VM also has a possibility of improving cache usage. Instructions for a VM are often more compact than native machine instructions. More of them can fit into a given amount of cache memory, so you stand a better chance of any given code being in cache when needed. This can help keep interpreted execution of VM code more competitive (in terms of speed) than most people would initially expect -- you can execute a lot of instructions on a modern CPU in the time taken by one cache miss.

It's also worth mentioning that this factor isn't necessarily different between the two at all. There's nothing preventing (for example) a C++ compiler from producing output intended to run on a virtual machine (with or without JIT). In fact, Microsoft's C++/CLI is nearly that -- an (almost) conforming C++ compiler (albeit, with a lot of extensions) that produces output intended to run on a virtual machine.

The reverse is also true: Microsoft now has .NET Native, which compiles C# (or VB.NET) code to a native executable. This gives performance that's generally much more like C++, but retains the features of C#/VB (e.g., C# compiled to native code still supports reflection). If you have performance intensive C# code, this may be helpful.

Garbage Collection

From what I've seen, I'd say garbage collection is the poorest-understood of these three factors. Just for an obvious example, the question here mentions: "GC doesn't add a lot of overhead either, unless you create and destroy thousands of objects [...]". In reality, if you create and destroy thousands of objects, the overhead from garbage collection will generally be fairly low. .NET uses a generational scavenger, which is a variety of copying collector. The garbage collector works by starting from "places" (e.g., registers and execution stack) that pointers/references are known to be accessible. It then "chases" those pointers to objects that have been allocated on the heap. It examines those objects for further pointers/references, until it has followed all of them to the ends of any chains, and found all the objects that are (at least potentially) accessible. In the next step, it takes all of the objects that are (or at least might be) in use, and compacts the heap by copying all of them into a contiguous chunk at one end of the memory being managed in the heap. The rest of the memory is then free (modulo finalizers having to be run, but at least in well-written code, they're rare enough that I'll ignore them for the moment).

What this means is that if you create and destroy lots of objects, garbage collection adds very little overhead. The time taken by a garbage collection cycle depends almost entirely on the number of objects that have been created but not destroyed. The primary consequence of creating and destroying objects in a hurry is simply that the GC has to run more often, but each cycle will still be fast. If you create objects and don't destroy them, the GC will run more often and each cycle will be substantially slower as it spends more time chasing pointers to potentially-live objects, and it spends more time copying objects that are still in use.

To combat this, generational scavenging works on the assumption that objects that have remained "alive" for quite a while are likely to continue remaining alive for quite a while longer. Based on this, it has a system where objects that survive some number of garbage collection cycles get "tenured", and the garbage collector starts to simply assume they're still in use, so instead of copying them at every cycle, it simply leaves them alone. This is a valid assumption often enough that generational scavenging typically has considerably lower overhead than most other forms of GC.

"Manual" memory management is often just as poorly understood. Just for one example, many attempts at comparison assume that all manual memory management follows one specific model as well (e.g., best-fit allocation). This is often little (if any) closer to reality than many peoples' beliefs about garbage collection (e.g., the widespread assumption that it's normally done using reference counting).

Given the variety of strategies for both garbage collection and manual memory management, it's quite difficult to compare the two in terms of overall speed. Attempting to compare the speed of allocating and/or freeing memory (by itself) is pretty nearly guaranteed to produce results that are meaningless at best, and outright misleading at worst.

Bonus Topic: Benchmarks

Since quite a few blogs, web sites, magazine articles, etc., claim to provide "objective" evidence in one direction or another, I'll put in my two-cents worth on that subject as well.

Most of these benchmarks are a bit like teenagers deciding to race their cars, and whoever wins gets to keep both cars. The web sites differ in one crucial way though: they guy who's publishing the benchmark gets to drive both cars. By some strange chance, his car always wins, and everybody else has to settle for "trust me, I was really driving your car as fast as it would go."

It's easy to write a poor benchmark that produces results that mean next to nothing. Almost anybody with anywhere close to the skill necessary to design a benchmark that produces anything meaningful, also has the skill to produce one that will give the results he's decided he wants. In fact it's probably easier to write code to produce a specific result than code that will really produce meaningful results.

As my friend James Kanze put it, "never trust a benchmark you didn't falsify yourself."

Conclusion

There is no simple answer. I'm reasonably certain that I could flip a coin to choose the winner, then pick a number between (say) 1 and 20 for the percentage it would win by, and write some code that would look like a reasonable and fair benchmark, and produced that foregone conclusion (at least on some target processor--a different processor might change the percentage a bit).

As others have pointed out, for most code, speed is almost irrelevant. The corollary to that (which is much more often ignored) is that in the little code where speed does matter, it usually matters a lot. At least in my experience, for the code where it really does matter, C++ is almost always the winner. There are definitely factors that favor C#, but in practice they seem to be outweighed by factors that favor C++. You can certainly find benchmarks that will indicate the outcome of your choice, but when you write real code, you can almost always make it faster in C++ than in C#. It might (or might not) take more skill and/or effort to write, but it's virtually always possible.

C++ performance vs. Java/C#

Generally, C# and Java can be just as fast or faster because the JIT compiler -- a compiler that compiles your IL the first time it's executed -- can make optimizations that a C++ compiled program cannot because it can query the machine. It can determine if the machine is Intel or AMD; Pentium 4, Core Solo, or Core Duo; or if supports SSE4, etc.

A C++ program has to be compiled beforehand usually with mixed optimizations so that it runs decently well on all machines, but is not optimized as much as it could be for a single configuration (i.e. processor, instruction set, other hardware).

Additionally certain language features allow the compiler in C# and Java to make assumptions about your code that allows it to optimize certain parts away that just aren't safe for the C/C++ compiler to do. When you have access to pointers there's a lot of optimizations that just aren't safe.

Also Java and C# can do heap allocations more efficiently than C++ because the layer of abstraction between the garbage collector and your code allows it to do all of its heap compression at once (a fairly expensive operation).

Now I can't speak for Java on this next point, but I know that C# for example will actually remove methods and method calls when it knows the body of the method is empty. And it will use this kind of logic throughout your code.

So as you can see, there are lots of reasons why certain C# or Java implementations will be faster.

Now this all said, specific optimizations can be made in C++ that will blow away anything that you could do with C#, especially in the graphics realm and anytime you're close to the hardware. Pointers do wonders here.

So depending on what you're writing I would go with one or the other. But if you're writing something that isn't hardware dependent (driver, video game, etc), I wouldn't worry about the performance of C# (again can't speak about Java). It'll do just fine.

One the Java side, @Swati points out a good article:

https://www.ibm.com/developerworks/library/j-jtp09275

Performance and memory differences between C# and Javascript?

Short Answer

If you are a proficient C# developer and novice JavaScript developer - your C# will most certainly be faster. If you are proficient at both then your C# will probably be faster, but the difference may not be as much as you thought - this is all very program specific.

Longer Answer

C# and JavaScript are languages so they don't have any particular performance characteristics themselves. C# compiles to .NET IL and is executed in a virtual machine, and various optimizations can be in play (such as the JITing you mentioned). JavaScript is not compiled, but rather interpreted - and is done so by the JavaScript engine particular to the browser. Each browser may have different approaches to improve "performance" of executing JavaScript - but performance optimization typically involves trade-offs (between speed and memory, for instance).

With everything else being equivalent (and non-trivial), the .NET code - JITed or not - will perform better than analogous JavaScript code running in a browser. The degree of difference in performance is highly specific to the particular program. Everything from the size and number of objects being processed down to how and when you use loops will affect how one runtime compares against the other.

More Details

Developers are sometimes confused about which languages are interpreted or compiled, and many are under the impression that the two are exclusive. In reality the situation is a bit more complicated.

  • C# for instance is compiled (into IL byte code). The IL Byte code is then interpreted (and typically JIT compiled by the particular .NET runtime).
  • C# contains features such as dynamic and Reflection.Emit() which enable C# to be used more like a scripting language while also "circumventing" the compiler and some of the performance benefits it provides.
  • JavaScript is interpreted, but a JavaScript engine is completely free to JIT as it sees fit. Check this blog article about Firefox where they describe how they use a two-phase JIT approach.

In the "real world" (non-trivial code, standard compilers and standard settings) compiled code will run faster than equivalent "pure" interpreted code. However, nowadays interpreted code usually runs through a JIT compiler - which has the possibility to be faster than pre-compiled code (because the JITter could tailor compilation to take advantage of a particular instruction set, for instance). Languages such as C# and Java take advantage of both compilation and "interpreted-JIT-compilation" by compiling down to byte code and then running through a JITer during execution.

The handicap that JavaScript faces in the performance arena has nothing to do with compilation but rather in certain aspects of the language and how it is (or tends to be) used. Again if you take a look at the blog entry on Firefox you see how changes to type information need to be tracked by the baseline compiler (which is better than the prior model of discarding the associated JIT instructions entirely).

With all this taken into consideration, well written JavaScript on a modern browser will run extremely well. It will still suffer the performance hit of the initial JIT pass (the equivalent of compiling to byte code before the "real" JIT), but the engines are written to minimize this as much as possible.

C# Performance For Proxy Server (vs C++)

You can use unsafe C# code and pointers in critical bottleneck points to make it run faster. Those behave much like C++ code and I believe it executes as fast.

But most of the time, C# is JIT-ted to uber-fast already, I don't believe there will be much differences as with what everyone has said.

But one thing you might want to consider is: Managed code (C#) string operations are rather slow compared to using pointers effectively in C++. There are more optimization tricks with C++ pointers than with CLR strings.

I think I have done some benchmarks before, but can't remember where I've put them.

What is faster- Java or C# (or good old C)?

The key piece of information in the question is this:

Every percent we can shave off our
processing time saves us tens of
thousands of dollars per year

So you need to consider how much it will cost to shave each percent off. If that optimization effort costs tens of thousands of dollars per year, then it isn't worth doing. You could make a bigger saving by firing a programmer.

With the right skills (which today are rarer and therefore more expensive) you can hand-craft assembler to get the fastest possible code. With slightly less rare (and expensive) skills, you can do almost as well with some really ugly-looking C code. And so on. The more performance you squeeze out of it, the more it will cost you in development effort, and there will be diminishing returns for ever greater effort. If the profit from this stays at "tens of thousands of dollars per year" then there will come a point where it is no longer worth the effort. In fact I would hazard a guess you're already at that point because "tens of thousands of dollars per year" is in the range of one salary, and probably not enough to buy the skills required to hand-optimize a complex program.

I would guess that if you have code already written in C, the effort of rewriting it all as a direct translation in another language will be 90% wasted effort. It will very likely perform slower simply because you won't be taking advantage of the capabilities of the platform, but instead working against them, e.g. trying to use Java as if it was C.

Also within your existing code, there will be parts that make a crucial contribution to the running time (they run frequently), and other parts that are totally irrelevant (they run rarely). So if you have some idea for speeding up the program, there is no economic sense in wasting time applying it to the parts of the program that don't affect the running time.

So use a profiler to find the hot spots, and see where time is being wasted in the existing code.

Update when I noticed the reference to the code being "multithreaded"

In that case, if you focus your effort on removing bottlenecks so that your program can scale well over a large number of cores, then it will automatically get faster every year at a rate that will dwarf any other optimization you can make. This time next year, quad cores will be standard on desktops. The year after that, 8 cores will be getting cheaper (I bought one over a year ago for a few thousand dollars), and I would predict that a 32 core machine will cost less than a developer by that time.



Related Topics



Leave a reply



Submit