Difference Between @Staticmethod and @Classmethod

Difference between @staticmethod and @classmethod

Maybe a bit of example code will help: Notice the difference in the call signatures of foo, class_foo and static_foo:

class A(object):
def foo(self, x):
print(f"executing foo({self}, {x})")

@classmethod
def class_foo(cls, x):
print(f"executing class_foo({cls}, {x})")

@staticmethod
def static_foo(x):
print(f"executing static_foo({x})")

a = A()

Below is the usual way an object instance calls a method. The object instance, a, is implicitly passed as the first argument.

a.foo(1)
# executing foo(<__main__.A object at 0xb7dbef0c>, 1)

With classmethods, the class of the object instance is implicitly passed as the first argument instead of self.

a.class_foo(1)
# executing class_foo(<class '__main__.A'>, 1)

You can also call class_foo using the class. In fact, if you define something to be
a classmethod, it is probably because you intend to call it from the class rather than from a class instance. A.foo(1) would have raised a TypeError, but A.class_foo(1) works just fine:

A.class_foo(1)
# executing class_foo(<class '__main__.A'>, 1)

One use people have found for class methods is to create inheritable alternative constructors.


With staticmethods, neither self (the object instance) nor cls (the class) is implicitly passed as the first argument. They behave like plain functions except that you can call them from an instance or the class:

a.static_foo(1)
# executing static_foo(1)

A.static_foo('hi')
# executing static_foo(hi)

Staticmethods are used to group functions which have some logical connection with a class to the class.


foo is just a function, but when you call a.foo you don't just get the function,
you get a "partially applied" version of the function with the object instance a bound as the first argument to the function. foo expects 2 arguments, while a.foo only expects 1 argument.

a is bound to foo. That is what is meant by the term "bound" below:

print(a.foo)
# <bound method A.foo of <__main__.A object at 0xb7d52f0c>>

With a.class_foo, a is not bound to class_foo, rather the class A is bound to class_foo.

print(a.class_foo)
# <bound method type.class_foo of <class '__main__.A'>>

Here, with a staticmethod, even though it is a method, a.static_foo just returns
a good 'ole function with no arguments bound. static_foo expects 1 argument, and
a.static_foo expects 1 argument too.

print(a.static_foo)
# <function static_foo at 0xb7d479cc>

And of course the same thing happens when you call static_foo with the class A instead.

print(A.static_foo)
# <function static_foo at 0xb7d479cc>

Meaning of @classmethod and @staticmethod for beginner?

Though classmethod and staticmethod are quite similar, there's a slight difference in usage for both entities: classmethod must have a reference to a class object as the first parameter, whereas staticmethod can have no parameters at all.

Example

class Date(object):

def __init__(self, day=0, month=0, year=0):
self.day = day
self.month = month
self.year = year

@classmethod
def from_string(cls, date_as_string):
day, month, year = map(int, date_as_string.split('-'))
date1 = cls(day, month, year)
return date1

@staticmethod
def is_date_valid(date_as_string):
day, month, year = map(int, date_as_string.split('-'))
return day <= 31 and month <= 12 and year <= 3999

date2 = Date.from_string('11-09-2012')
is_date = Date.is_date_valid('11-09-2012')

Explanation

Let's assume an example of a class, dealing with date information (this will be our boilerplate):

class Date(object):

def __init__(self, day=0, month=0, year=0):
self.day = day
self.month = month
self.year = year

This class obviously could be used to store information about certain dates (without timezone information; let's assume all dates are presented in UTC).

Here we have __init__, a typical initializer of Python class instances, which receives arguments as a typical instancemethod, having the first non-optional argument (self) that holds a reference to a newly created instance.

Class Method

We have some tasks that can be nicely done using classmethods.

Let's assume that we want to create a lot of Date class instances having date information coming from an outer source encoded as a string with format 'dd-mm-yyyy'. Suppose we have to do this in different places in the source code of our project.

So what we must do here is:

  1. Parse a string to receive day, month and year as three integer variables or a 3-item tuple consisting of that variable.
  2. Instantiate Date by passing those values to the initialization call.

This will look like:

day, month, year = map(int, string_date.split('-'))
date1 = Date(day, month, year)

For this purpose, C++ can implement such a feature with overloading, but Python lacks this overloading. Instead, we can use classmethod. Let's create another "constructor".

    @classmethod
def from_string(cls, date_as_string):
day, month, year = map(int, date_as_string.split('-'))
date1 = cls(day, month, year)
return date1

date2 = Date.from_string('11-09-2012')

Let's look more carefully at the above implementation, and review what advantages we have here:

  1. We've implemented date string parsing in one place and it's reusable now.
  2. Encapsulation works fine here (if you think that you could implement string parsing as a single function elsewhere, this solution fits the OOP paradigm far better).
  3. cls is an object that holds the class itself, not an instance of the class. It's pretty cool because if we inherit our Date class, all children will have from_string defined also.

Static method

What about staticmethod? It's pretty similar to classmethod but doesn't take any obligatory parameters (like a class method or instance method does).

Let's look at the next use case.

We have a date string that we want to validate somehow. This task is also logically bound to the Date class we've used so far, but doesn't require instantiation of it.

Here is where staticmethod can be useful. Let's look at the next piece of code:

    @staticmethod
def is_date_valid(date_as_string):
day, month, year = map(int, date_as_string.split('-'))
return day <= 31 and month <= 12 and year <= 3999

# usage:
is_date = Date.is_date_valid('11-09-2012')

So, as we can see from usage of staticmethod, we don't have any access to what the class is---it's basically just a function, called syntactically like a method, but without access to the object and its internals (fields and another methods), while classmethod does.

What are the differences between @class method, @static method, and a normal function and how do I use them

Object State

Object state is the state of your variables inside the scope of an object.

Class State

Class state is the state of your variables which are defined class-wide. Class variables are available to all instances of that class, not instance specific that is.

Instance Methods

You call these normal functions, these are used to interact with object state. They get/set or do stuff with your variables inside the object.

Class Methods

These have access to the class-wide variables and may perform operations on them, but they cannot modify object state, obviously.

Static Methods

These are not related to the class or the objects derived from that class in anyway. It is a normal function that can be very well defined outside of the scope of your class. You define methods as static just to apply namespacing on them.

Difference between @staticmethod and @classmethod

Maybe a bit of example code will help: Notice the difference in the call signatures of foo, class_foo and static_foo:

class A(object):
def foo(self, x):
print(f"executing foo({self}, {x})")

@classmethod
def class_foo(cls, x):
print(f"executing class_foo({cls}, {x})")

@staticmethod
def static_foo(x):
print(f"executing static_foo({x})")

a = A()

Below is the usual way an object instance calls a method. The object instance, a, is implicitly passed as the first argument.

a.foo(1)
# executing foo(<__main__.A object at 0xb7dbef0c>, 1)

With classmethods, the class of the object instance is implicitly passed as the first argument instead of self.

a.class_foo(1)
# executing class_foo(<class '__main__.A'>, 1)

You can also call class_foo using the class. In fact, if you define something to be
a classmethod, it is probably because you intend to call it from the class rather than from a class instance. A.foo(1) would have raised a TypeError, but A.class_foo(1) works just fine:

A.class_foo(1)
# executing class_foo(<class '__main__.A'>, 1)

One use people have found for class methods is to create inheritable alternative constructors.


With staticmethods, neither self (the object instance) nor cls (the class) is implicitly passed as the first argument. They behave like plain functions except that you can call them from an instance or the class:

a.static_foo(1)
# executing static_foo(1)

A.static_foo('hi')
# executing static_foo(hi)

Staticmethods are used to group functions which have some logical connection with a class to the class.


foo is just a function, but when you call a.foo you don't just get the function,
you get a "partially applied" version of the function with the object instance a bound as the first argument to the function. foo expects 2 arguments, while a.foo only expects 1 argument.

a is bound to foo. That is what is meant by the term "bound" below:

print(a.foo)
# <bound method A.foo of <__main__.A object at 0xb7d52f0c>>

With a.class_foo, a is not bound to class_foo, rather the class A is bound to class_foo.

print(a.class_foo)
# <bound method type.class_foo of <class '__main__.A'>>

Here, with a staticmethod, even though it is a method, a.static_foo just returns
a good 'ole function with no arguments bound. static_foo expects 1 argument, and
a.static_foo expects 1 argument too.

print(a.static_foo)
# <function static_foo at 0xb7d479cc>

And of course the same thing happens when you call static_foo with the class A instead.

print(A.static_foo)
# <function static_foo at 0xb7d479cc>

Python : Difference between static methods vs class method

A classmethod gets passed the class 'cls' that it was called upon. For more details see: What is the difference between @staticmethod and @classmethod in Python?

Python classmethods: what's the difference between a member of an instance and a member of the class?

B().f and B.f are different objects because Python creates a new bound method object each time you refer to a non-static method via attribute access.

For example, B.f is B.f is also False.

>>> B.f is B.f
False

Similarly, you will get a new method object even if the instance stays the same:

>>> b = B()
>>> b.f is b.f
False

@staticmethod creates a new static method object, but

When a static method object is retrieved from a class or a class
instance, the object actually returned is the wrapped object, which is
not subject to any further transformation.

(from Data model)

In this case A.f always returns the same f function object.



Related Topics



Leave a reply



Submit