Run 'Perf Stat' on The Output of 'Perf Record'

Perf Stat vs Perf Record

First of all, your test case of using sleep and page-faults is not an ideal test case. There should be no page fault events during the sleep duration, you you can't really expect anything interesting. For the sake of easier reasoning I suggest to use the ref-cycles (hardware) event and a busy workload such as awk 'BEGIN { while(1){} }'.

Question 1: It is my understanding that perf stat gets a "summary" of
counts but when used with the -I option gets the counts at the
specified millisecond interval. With this option does it sum up the
counts over the interval or get the average over the interval, or
something else entirely? I assume it is summed up.

Yes. The values are just summed up. You can confirm that by testing:

$ perf stat -e ref-cycles -I 1000 timeout 10s awk 'BEGIN { while(1){} }'
# time counts unit events
1.000105072 2,563,666,664 ref-cycles
2.000267991 2,577,462,550 ref-cycles
3.000415395 2,577,211,936 ref-cycles
4.000543311 2,577,240,458 ref-cycles
5.000702131 2,577,525,002 ref-cycles
6.000857663 2,577,156,088 ref-cycles

[ ... snip ... ]
[ Note that it may not be as nicely consistent on all systems due dynamic frequency scaling ]

$ perf stat -e ref-cycles -I 3000 timeout 10s awk 'BEGIN { while(1){} }'
# time counts unit events
3.000107921 7,736,108,718 ref-cycles
6.000265186 7,732,065,900 ref-cycles
9.000372029 7,728,302,192 ref-cycles

Question 2: Why doesn't perf stat -e <event1> -I 1000 sleep 5 give
about the same counts as if I summed up the counts over each second
for the following command perf record -e <event1> -F 1000 sleep 5?

perf stat -I is in milliseconds, whereas perf record -F is in HZ (1/s), so the corresponding command to perf stat -I 1000 is perf record -F 1. In fact with our more stable event/workload, this looks better:

$ perf stat -e ref-cycles -I 1000 timeout 10s awk 'BEGIN { while(1){} }'
# time counts unit events
1.000089518 2,578,694,534 ref-cycles
2.000203872 2,579,866,250 ref-cycles
3.000294300 2,579,857,852 ref-cycles
4.000390273 2,579,964,842 ref-cycles
5.000488375 2,577,955,536 ref-cycles
6.000587028 2,577,176,316 ref-cycles
7.000688250 2,577,334,786 ref-cycles
8.000785388 2,577,581,500 ref-cycles
9.000876466 2,577,511,326 ref-cycles
10.000977965 2,577,344,692 ref-cycles
10.001195845 466,674 ref-cycles

$ perf record -e ref-cycles -F 1 timeout 10s awk 'BEGIN { while(1){} }'
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.008 MB perf.data (17 samples) ]

$ perf script -F time,period
3369070.273722: 1
3369070.273755: 1
3369070.273911: 3757
3369070.273916: 3015133
3369070.274486: 1
3369070.274556: 1
3369070.274657: 1778
3369070.274662: 2196921
3369070.275523: 47192985748
3369072.663696: 2578692405
3369073.663547: 2579122382
3369074.663609: 2580015300
3369075.664085: 2579873741
3369076.664433: 2578638211
3369077.664379: 2578378119
3369078.664175: 2578166440
3369079.663896: 2579238122

So you see, eventually the results are stable also for perf record -F. Unfortunately the documentation of perf record is very poor. You can learn what the settings -c and -F mean by looking at the documentation of the underlying system call man perf_event_open:

sample_period, sample_freq A "sampling" event is one that
generates an overflow notification every N events, where N is given by
sample_period. A sampling event has sample_period > 0. When
an overflow occurs, requested data is recorded in the mmap buffer.
The sample_type field controls what data is recorded on each
overflow.

sample_freq can be used if you wish to use frequency rather than
period. In this case, you set the freq flag. The kernel will
adjust the sampling period to try and achieve the desired rate.
The
rate of adjustment is a timer tick.

So while perf stat uses an internal timer to read the value of the counter every -i milliseconds, perf record sets an event overflow counter to take a sample every -c events. That means it takes a sample every N events (e.g. every N page-fault or cycles). With -F, it it tries to regulate this overflow value to achieve the desired frequency. It tries different values and tunes it up/down accordingly. This eventually works for counters with a stable rate, but will get erratic results for dynamic events.

Redirect perf ouput

Probably the process you attached to didn't generate any events during the interval perf was running for. For example if it was asleep and never woke up.

In that case, you get <not counted> for each event where perf didn't even record a start point, e.g. no context switch to the process. (perf stat still can record and print 0 for an event, so <not counted> means something more than 0. Although for events like task-clock or cycles it's essentially synonymous because there's no way for those events not to count any counts or time while a process is running.)

This all applies regardless of whether perf was outputting to the terminal and killed with control-C, or outputting to a file with -o. (Just tested it on my desktop with the PID of a chromium process that apparently didn't do anything in the 2 seconds I left perf running.)

But anyway, you should treat <not collected> as 0, or a sign that you didn't sample long enough to see anything interesting.



Related Topics



Leave a reply



Submit