What Is the Meaning of & in C++

What is the meaning of *& in C++

mb is a pointer that's being passed by reference. This means that if get() were to change the value of the pointer, the change would propagate back to the caller.

What does '&' do in a C++ declaration?

The "&" denotes a reference instead of a pointer to an object (In your case a constant reference).

The advantage of having a function such as

foo(string const& myname) 

over

foo(string const* myname)

is that in the former case you are guaranteed that myname is non-null, since C++ does not allow NULL references. Since you are passing by reference, the object is not copied, just like if you were passing a pointer.

Your second example:

const string &GetMethodName() { ... }

Would allow you to return a constant reference to, for example, a member variable. This is useful if you do not wish a copy to be returned, and again be guaranteed that the value returned is non-null. As an example, the following allows you direct, read-only access:

class A
{
public:
int bar() const {return someValue;}
//Big, expensive to copy class
}

class B
{
public:
A const& getA() { return mA;}
private:
A mA;
}
void someFunction()
{
B b = B();
//Access A, ability to call const functions on A
//No need to check for null, since reference is guaranteed to be valid.
int value = b.getA().bar();
}

You have to of course be careful to not return invalid references.
Compilers will happily compile the following (depending on your warning level and how you treat warnings)

int const& foo() 
{
int a;

//This is very bad, returning reference to something on the stack. This will
//crash at runtime.
return a;
}

Basically, it is your responsibility to ensure that whatever you are returning a reference to is actually valid.

What does T&& (double ampersand) mean in C++11?

It declares an rvalue reference (standards proposal doc).

Here's an introduction to rvalue references.

Here's a fantastic in-depth look at rvalue references by one of Microsoft's standard library developers.

CAUTION: the linked article on MSDN ("Rvalue References: C++0x Features in VC10, Part 2") is a very clear introduction to Rvalue references, but makes statements about Rvalue references that were once true in the draft C++11 standard, but are not true for the final one! Specifically, it says at various points that rvalue references can bind to lvalues, which was once true, but was changed.(e.g. int x; int &&rrx = x; no longer compiles in GCC) – drewbarbs Jul 13 '14 at 16:12

The biggest difference between a C++03 reference (now called an lvalue reference in C++11) is that it can bind to an rvalue like a temporary without having to be const. Thus, this syntax is now legal:

T&& r = T();

rvalue references primarily provide for the following:

Move semantics. A move constructor and move assignment operator can now be defined that takes an rvalue reference instead of the usual const-lvalue reference. A move functions like a copy, except it is not obliged to keep the source unchanged; in fact, it usually modifies the source such that it no longer owns the moved resources. This is great for eliminating extraneous copies, especially in standard library implementations.

For example, a copy constructor might look like this:

foo(foo const& other)
{
this->length = other.length;
this->ptr = new int[other.length];
copy(other.ptr, other.ptr + other.length, this->ptr);
}

If this constructor were passed a temporary, the copy would be unnecessary because we know the temporary will just be destroyed; why not make use of the resources the temporary already allocated? In C++03, there's no way to prevent the copy as we cannot determine whether we were passed a temporary. In C++11, we can overload a move constructor:

foo(foo&& other)
{
this->length = other.length;
this->ptr = other.ptr;
other.length = 0;
other.ptr = nullptr;
}

Notice the big difference here: the move constructor actually modifies its argument. This would effectively "move" the temporary into the object being constructed, thereby eliminating the unnecessary copy.

The move constructor would be used for temporaries and for non-const lvalue references that are explicitly converted to rvalue references using the std::move function (it just performs the conversion). The following code both invoke the move constructor for f1 and f2:

foo f1((foo())); // Move a temporary into f1; temporary becomes "empty"
foo f2 = std::move(f1); // Move f1 into f2; f1 is now "empty"

Perfect forwarding. rvalue references allow us to properly forward arguments for templated functions. Take for example this factory function:

template <typename T, typename A1>
std::unique_ptr<T> factory(A1& a1)
{
return std::unique_ptr<T>(new T(a1));
}

If we called factory<foo>(5), the argument will be deduced to be int&, which will not bind to a literal 5, even if foo's constructor takes an int. Well, we could instead use A1 const&, but what if foo takes the constructor argument by non-const reference? To make a truly generic factory function, we would have to overload factory on A1& and on A1 const&. That might be fine if factory takes 1 parameter type, but each additional parameter type would multiply the necessary overload set by 2. That's very quickly unmaintainable.

rvalue references fix this problem by allowing the standard library to define a std::forward function that can properly forward lvalue/rvalue references. For more information about how std::forward works, see this excellent answer.

This enables us to define the factory function like this:

template <typename T, typename A1>
std::unique_ptr<T> factory(A1&& a1)
{
return std::unique_ptr<T>(new T(std::forward<A1>(a1)));
}

Now the argument's rvalue/lvalue-ness is preserved when passed to T's constructor. That means that if factory is called with an rvalue, T's constructor is called with an rvalue. If factory is called with an lvalue, T's constructor is called with an lvalue. The improved factory function works because of one special rule:

When the function parameter type is of
the form T&& where T is a template
parameter, and the function argument
is an lvalue of type A, the type A& is
used for template argument deduction.

Thus, we can use factory like so:

auto p1 = factory<foo>(foo()); // calls foo(foo&&)
auto p2 = factory<foo>(*p1); // calls foo(foo const&)

Important rvalue reference properties:

  • For overload resolution, lvalues prefer binding to lvalue references and rvalues prefer binding to rvalue references. Hence why temporaries prefer invoking a move constructor / move assignment operator over a copy constructor / assignment operator.
  • rvalue references will implicitly bind to rvalues and to temporaries that are the result of an implicit conversion. i.e. float f = 0f; int&& i = f; is well formed because float is implicitly convertible to int; the reference would be to a temporary that is the result of the conversion.
  • Named rvalue references are lvalues. Unnamed rvalue references are rvalues. This is important to understand why the std::move call is necessary in: foo&& r = foo(); foo f = std::move(r);

meaning of &variable (passed to function)

func being some arbitrary user defined function

It couldn't be "arbitrary" - it must take a pointer to int or a void* in order for the call to be legal.

This ampersand is the "take address" operator. It passes func the address of a, so that the func could, for example, modify it:

void func(int *pa) {
*pa = 4; // Note the asterisk - it "undoes" the effect of the ampersand
}

If your main prints a after the call to func, it prints 4 instead of 3.

Note that if you pass a instead of a pointer to a to a function that takes an int, not an int*, then modifications done to that int inside the function will have no effect on the parameter that you pass, because in C parameters are passed by value.

the variable a in the actual code is probably global or extern or something

It is probably not global, because there is no point in passing globals around: by virtue of being global, they are already accessible from everywhere.

meaning of & in C++

Just to add to the more technical explanations, a simpler way of viewing if (m & 1) is that is tests whether m is odd (i.e. not an exact multiple of 2):

if (m & 1)
// m is odd (1, 3, 5, 7, 9, ...) - do something
else
// m is even (0, 2, 4, 6, 8, ...) - do something else


Related Topics



Leave a reply



Submit