How to Mathematically Evaluate a String Like "2-1" to Produce "1"

How to mathematically evaluate a string like 2-1 to produce 1?

I know this question is old, but I came across it last night while searching for something that wasn't quite related, and every single answer here is bad. Not just bad, very bad. The examples I give here will be from a class that I created back in 2005 and spent the past few hours updating for PHP5 because of this question. Other systems do exist, and were around before this question was posted, so it baffles me why every answer here tells you to use eval, when the caution from PHP is:

The eval() language construct is very dangerous because it allows execution of arbitrary PHP code. Its use thus is discouraged. If you have carefully verified that there is no other option than to use this construct, pay special attention not to pass any user provided data into it without properly validating it beforehand.

Before I jump in to the example, the places to get the class I will be using is on either PHPClasses or GitHub. Both the eos.class.php and stack.class.php are required, but can be combined in to the same file.

The reason for using a class like this is that it includes and infix to postfix(RPN) parser, and then an RPN Solver. With these, you never have to use the eval function and open your system up to vulnerabilities. Once you have the classes, the following code is all that is needed to solve a simple (to more complex) equation such as your 2-1 example.

require_once "eos.class.php";
$equation = "2-1";
$eq = new eqEOS();
$result = $eq->solveIF($equation);

That's it! You can use a parser like this for most equations, however complicated and nested without ever having to resort to the 'evil eval'.

Because I really don't want this only only to have my class in it, here are some other options. I am just familiar with my own since I've been using it for 8 years. ^^

Wolfram|Alpha API

Sage

A fairly bad parser

phpdicecalc

Not quite sure what happened to others that I had found previously - came across another one on GitHub before as well, unfortunately I didn't bookmark it, but it was related to large float operations that included a parser as well.

Anyways, I wanted to make sure an answer to solving equations in PHP on here wasn't pointing all future searchers to eval as this was at the top of a google search. ^^

Evaluating a string as a mathematical expression in JavaScript

I've eventually gone for this solution, which works for summing positive and negative integers (and with a little modification to the regex will work for decimals too):

function sum(string) {
return (string.match(/^(-?\d+)(\+-?\d+)*$/)) ? string.split('+').stringSum() : NaN;
}

Array.prototype.stringSum = function() {
var sum = 0;
for(var k=0, kl=this.length;k<kl;k++)
{
sum += +this[k];
}
return sum;
}

I'm not sure if it's faster than eval(), but as I have to carry out the operation lots of times I'm far more comfortable runing this script than creating loads of instances of the javascript compiler

How to evaluate a math expression given in string form?

With JDK1.6, you can use the built-in Javascript engine.

import javax.script.ScriptEngineManager;
import javax.script.ScriptEngine;
import javax.script.ScriptException;

public class Test {
public static void main(String[] args) throws ScriptException {
ScriptEngineManager mgr = new ScriptEngineManager();
ScriptEngine engine = mgr.getEngineByName("JavaScript");
String foo = "40+2";
System.out.println(engine.eval(foo));
}
}

Evaluating a mathematical expression in a string

Pyparsing can be used to parse mathematical expressions. In particular, fourFn.py
shows how to parse basic arithmetic expressions. Below, I've rewrapped fourFn into a numeric parser class for easier reuse.

from __future__ import division
from pyparsing import (Literal, CaselessLiteral, Word, Combine, Group, Optional,
ZeroOrMore, Forward, nums, alphas, oneOf)
import math
import operator

__author__ = 'Paul McGuire'
__version__ = '$Revision: 0.0 $'
__date__ = '$Date: 2009-03-20 $'
__source__ = '''http://pyparsing.wikispaces.com/file/view/fourFn.py
http://pyparsing.wikispaces.com/message/view/home/15549426
'''
__note__ = '''
All I've done is rewrap Paul McGuire's fourFn.py as a class, so I can use it
more easily in other places.
'''


class NumericStringParser(object):
'''
Most of this code comes from the fourFn.py pyparsing example

'''

def pushFirst(self, strg, loc, toks):
self.exprStack.append(toks[0])

def pushUMinus(self, strg, loc, toks):
if toks and toks[0] == '-':
self.exprStack.append('unary -')

def __init__(self):
"""
expop :: '^'
multop :: '*' | '/'
addop :: '+' | '-'
integer :: ['+' | '-'] '0'..'9'+
atom :: PI | E | real | fn '(' expr ')' | '(' expr ')'
factor :: atom [ expop factor ]*
term :: factor [ multop factor ]*
expr :: term [ addop term ]*
"""
point = Literal(".")
e = CaselessLiteral("E")
fnumber = Combine(Word("+-" + nums, nums) +
Optional(point + Optional(Word(nums))) +
Optional(e + Word("+-" + nums, nums)))
ident = Word(alphas, alphas + nums + "_$")
plus = Literal("+")
minus = Literal("-")
mult = Literal("*")
div = Literal("/")
lpar = Literal("(").suppress()
rpar = Literal(")").suppress()
addop = plus | minus
multop = mult | div
expop = Literal("^")
pi = CaselessLiteral("PI")
expr = Forward()
atom = ((Optional(oneOf("- +")) +
(ident + lpar + expr + rpar | pi | e | fnumber).setParseAction(self.pushFirst))
| Optional(oneOf("- +")) + Group(lpar + expr + rpar)
).setParseAction(self.pushUMinus)
# by defining exponentiation as "atom [ ^ factor ]..." instead of
# "atom [ ^ atom ]...", we get right-to-left exponents, instead of left-to-right
# that is, 2^3^2 = 2^(3^2), not (2^3)^2.
factor = Forward()
factor << atom + \
ZeroOrMore((expop + factor).setParseAction(self.pushFirst))
term = factor + \
ZeroOrMore((multop + factor).setParseAction(self.pushFirst))
expr << term + \
ZeroOrMore((addop + term).setParseAction(self.pushFirst))
# addop_term = ( addop + term ).setParseAction( self.pushFirst )
# general_term = term + ZeroOrMore( addop_term ) | OneOrMore( addop_term)
# expr << general_term
self.bnf = expr
# map operator symbols to corresponding arithmetic operations
epsilon = 1e-12
self.opn = {"+": operator.add,
"-": operator.sub,
"*": operator.mul,
"/": operator.truediv,
"^": operator.pow}
self.fn = {"sin": math.sin,
"cos": math.cos,
"tan": math.tan,
"exp": math.exp,
"abs": abs,
"trunc": lambda a: int(a),
"round": round,
"sgn": lambda a: abs(a) > epsilon and cmp(a, 0) or 0}

def evaluateStack(self, s):
op = s.pop()
if op == 'unary -':
return -self.evaluateStack(s)
if op in "+-*/^":
op2 = self.evaluateStack(s)
op1 = self.evaluateStack(s)
return self.opn[op](op1, op2)
elif op == "PI":
return math.pi # 3.1415926535
elif op == "E":
return math.e # 2.718281828
elif op in self.fn:
return self.fn[op](self.evaluateStack(s))
elif op[0].isalpha():
return 0
else:
return float(op)

def eval(self, num_string, parseAll=True):
self.exprStack = []
results = self.bnf.parseString(num_string, parseAll)
val = self.evaluateStack(self.exprStack[:])
return val

You can use it like this

nsp = NumericStringParser()
result = nsp.eval('2^4')
print(result)
# 16.0

result = nsp.eval('exp(2^4)')
print(result)
# 8886110.520507872

Evaluating a string of simple mathematical expressions

Perl (no eval)

Number of characters: 167 106 (see below for the 106 character version)

Fully obfuscated function: (167 characters if you join these three lines into one)

sub e{my$_="($_[0])";s/\s//g;$n=q"(-?\d++(\.\d+)?+)";
@a=(sub{$1},1,sub{$3*$6},sub{$3+$6},4,sub{$3-$6},6,sub{$3/$6});
while(s:\($n\)|(?<=\()$n(.)$n:$a[7&ord$5]():e){}$_}

Clear/deobfuscated version:

sub e {
my $_ = "($_[0])";
s/\s//g;
$n=q"(-?\d++(\.\d+)?+)"; # a regex for "number", including capturing groups
# q"foo" in perl means the same as 'foo'
# Note the use of ++ and ?+ to tell perl
# "no backtracking"

@a=(sub{$1}, # 0 - no operator found
1, # placeholder
sub{$3*$6}, # 2 - ord('*') = 052
sub{$3+$6}, # 3 - ord('+') = 053
4, # placeholder
sub{$3-$6}, # 5 - ord('-') = 055
6, # placeholder
sub{$3/$6}); # 7 - ord('/') = 057

# The (?<=... bit means "find a NUM WHATEVER NUM sequence that happens
# immediately after a left paren", without including the left
# paren. The while loop repeatedly replaces "(" NUM WHATEVER NUM with
# "(" RESULT and "(" NUM ")" with NUM. The while loop keeps going
# so long as those replacements can be made.

while(s:\($n\)|(?<=\()$n(.)$n:$a[7&ord$5]():e){}

# A perl function returns the value of the last statement
$_
}

I had misread the rules initially, so I'd submitted a version with "eval". Here's a version without it.

The latest bit of insight came when I realized that the last octal digit in the character codes for +, -, /, and * is different, and that ord(undef) is 0. This lets me set up the dispatch table @a as an array, and just invoke the code at the location 7 & ord($3).

There's an obvious spot to shave off one more character - change q"" into '' - but that would make it harder to cut-and-paste into the shell.

Even shorter

Number of characters: 124 106

Taking edits by ephemient into account, it's now down to 124 characters: (join the two lines into one)

sub e{$_=$_[0];s/\s//g;$n=q"(-?\d++(\.\d+)?+)";
1while s:\($n\)|$n(.)$n:($1,1,$3*$6,$3+$6,4,$3-$6,6,$6&&$3/$6)[7&ord$5]:e;$_}

Shorter still

Number of characters: 110 106

The ruby solution down below is pushing me further, though I can't reach its 104 characters:

sub e{($_)=@_;$n='( *-?[.\d]++ *)';
s:\($n\)|$n(.)$n:(($1,$2-$4,$4&&$2/$4,$2*$4,$2+$4)x9)[.8*ord$3]:e?e($_):$_}

I had to give in and use ''. That ruby send trick is really useful for this problem.

Squeezing water from a stone

Number of characters: 106

A small contortion to avoid the divide-by-zero check.

sub e{($_)=@_;$n='( *-?[.\d]++ *)';
s:\($n\)|$n(.)$n:($1,0,$2*$4,$2+$4,0,$2-$4)[7&ord$3]//$2/$4:e?e($_):$_}

Here's the test harness for this function:

perl -le 'sub e{($_)=@_;$n='\''( *-?[.\d]++ *)'\'';s:\($n\)|$n(.)$n:($1,0,$2*$4,$2+$4,0,$2-$4)[7&ord$3]//$2/$4:e?e($_):$_}' -e 'print e($_) for @ARGV' '1 + 3' '1 + ((123 * 3 - 69) / 100)' '4 * (9 - 4) / (2 * 6 - 2) + 8' '2*3*4*5+99' '2.45/8.5*9.27+(5*0.0023) ' '1 + 3 / -8'

Safely evaluate simple string equation

One way would be to use numexpr. It's mostly a module for optimizing (and multithreading) numpy operations but it can also handle mathematical python expressions:

>>> import numexpr
>>> numexpr.evaluate('2 + 4.1 * 3')
array(14.299999999999999)

You can call .item on the result to get a python-like type:

>>> numexpr.evaluate('17 / 3').item()
5.666666666666667

It's a 3rd party extension module so it may be total overkill here but it's definetly safer than eval and supports quite a number of functions (including numpy and math operations). If also supports "variable substitution":

>>> b = 10
>>> numexpr.evaluate('exp(17) / b').item()
2415495.27535753

One way with the python standard library, although very limited is ast.literal_eval. It works for the most basic data types and literals in Python:

>>> import ast
>>> ast.literal_eval('1+2')
3

But fails with more complicated expressions like:

>>> ast.literal_eval('import os')
SyntaxError: invalid syntax

>>> ast.literal_eval('exec(1+2)')
ValueError: malformed node or string: <_ast.Call object at 0x0000023BDEADB400>

Unfortunatly any operator besides + and - isn't possible:

>>> ast.literal_eval('1.2 * 2.3')
ValueError: malformed node or string: <_ast.BinOp object at 0x0000023BDEF24B70>

I copied part of the documentation here that contains the supported types:

Safely evaluate an expression node or a string containing a Python literal or container display. The string or node provided may only consist of the following Python literal structures: strings, bytes, numbers, tuples, lists, dicts, sets, booleans, and None.



Related Topics



Leave a reply



Submit