Rfid Rc522 Raspberry Pi 2 Windows Iot

RFID RC522 Raspberry PI 2 Windows IOT

I finally found a solution.

I haven't success in the arudino portability; so i've used this project as start point.

The project is writen in C#. I've just adapt the code for Windows IOT GPIO and SPI. An it's working !

Main

        var mfrc = new Mfrc522();
await mfrc.InitIO();

while (true)
{
if (mfrc.IsTagPresent())
{
var uid = mfrc.ReadUid();

mfrc.HaltTag();
}

}

Library Mfrc522Lib.cs (all in one)

using System;
using System.Collections.Generic;
using System.Threading;
using System.Threading.Tasks;
using Windows.Devices.Enumeration;
using Windows.Devices.Gpio;
using Windows.Devices.Spi;

namespace Mfrc522Lib
{
public static class Registers
{
private const byte bitFraming = 0x0D;
private const byte comIrq = 0x04;
private const byte comIrqEnable = 0x02;
private const byte command = 0x01;
private const byte control = 0x0C;
private const byte error = 0x06;
private const byte fifoData = 0x09;
private const byte fifoLevel = 0x0A;
private const byte mode = 0x11;
private const byte rxMode = 0x13;
private const byte timerMode = 0x2A;
private const byte timerPrescaler = 0x2B;
private const byte timerReloadHigh = 0x2C;
private const byte timerReloadLow = 0x2D;
private const byte txAsk = 0x15;
private const byte txControl = 0x14;
private const byte txMode = 0x12;
private const byte version = 0x37;

public static byte BitFraming
{
get
{
return bitFraming;
}
}

public static byte ComIrq
{
get
{
return comIrq;
}
}

public static byte ComIrqEnable
{
get
{
return comIrqEnable;
}
}

public static byte Command
{
get
{
return command;
}
}

public static byte Control
{
get
{
return control;
}
}

public static byte Error
{
get
{
return error;
}
}

public static byte FifoData
{
get
{
return fifoData;
}
}

public static byte FifoLevel
{
get
{
return fifoLevel;
}
}

public static byte Mode
{
get
{
return mode;
}
}

public static byte RxMode
{
get
{
return rxMode;
}
}

public static byte TimerMode
{
get
{
return timerMode;
}
}

public static byte TimerPrescaler
{
get
{
return timerPrescaler;
}
}

public static byte TimerReloadHigh
{
get
{
return timerReloadHigh;
}
}

public static byte TimerReloadLow
{
get
{
return timerReloadLow;
}
}

public static byte TxAsk
{
get
{
return txAsk;
}
}

public static byte TxControl
{
get
{
return txControl;
}
}

public static byte TxMode
{
get
{
return txMode;
}
}

public static byte Version
{
get
{
return version;
}
}
}
public static class PiccResponses
{
private const ushort answerToRequest = 0x0004;
private const byte selectAcknowledge = 0x08;
private const byte acknowledge = 0x0A;

public static byte Acknowledge
{
get
{
return acknowledge;
}
}

public static byte SelectAcknowledge
{
get
{
return selectAcknowledge;
}
}

public static ushort AnswerToRequest
{
get
{
return answerToRequest;
}
}
}
public static class PiccCommands
{
private const byte anticollision_1 = 0x93;
private const byte anticollision_2 = 0x20;
private const byte authenticateKeyA = 0x60;
private const byte authenticateKeyB = 0x61;
private const byte halt_1 = 0x50;
private const byte halt_2 = 0x00;
private const byte read = 0x30;
private const byte request = 0x26;
private const byte select_1 = 0x93;
private const byte select_2 = 0x70;
private const byte write = 0xA0;

public static byte AuthenticateKeyA
{
get
{
return authenticateKeyA;
}
}

public static byte AuthenticateKeyB
{
get
{
return authenticateKeyB;
}
}

public static byte Halt_1
{
get
{
return halt_1;
}
}

public static byte Halt_2
{
get
{
return halt_2;
}
}

public static byte Read
{
get
{
return read;
}
}

public static byte Request
{
get
{
return request;
}
}

public static byte Select_1
{
get
{
return select_1;
}
}

public static byte Select_2
{
get
{
return select_2;
}
}

public static byte Write
{
get
{
return write;
}
}

public static byte Anticollision_1
{
get
{
return anticollision_1;
}
}

public static byte Anticollision_2
{
get
{
return anticollision_2;
}
}
}

public static class PcdCommands
{
private const byte idle = 0x00;
private const byte mifareAuthenticate = 0x0E;
private const byte transceive = 0x0C;

public static byte Idle
{
get
{
return idle;
}
}

public static byte MifareAuthenticate
{
get
{
return mifareAuthenticate;
}
}

public static byte Transceive
{
get
{
return transceive;
}
}
}

public class Uid
{
public byte Bcc { get; private set; }
public byte[] Bytes { get; private set; }
public byte[] FullUid { get; private set; }
public bool IsValid { get; private set; }

internal Uid(byte[] uid)
{
FullUid = uid;
Bcc = uid[4];

Bytes = new byte[4];
System.Array.Copy(FullUid, 0, Bytes, 0, 4);

foreach (var b in Bytes)
{
if (b != 0x00)
IsValid = true;
}
}

public sealed override bool Equals(object obj)
{
if (!(obj is Uid))
return false;

var uidWrapper = (Uid)obj;

for (int i = 0; i < 5; i++)
{
if (FullUid[i] != uidWrapper.FullUid[i])
return false;
}

return true;
}

public sealed override int GetHashCode()
{
int uid = 0;

for (int i = 0; i < 4; i++)
uid |= Bytes[i] << (i * 8);

return uid;
}

public sealed override string ToString()
{
var formatString = "x" + (Bytes.Length * 2);
return GetHashCode().ToString(formatString);
}
}

public sealed class Mfrc522
{
public SpiDevice _spi { get; private set; }
public GpioController IoController { get; private set; }
public GpioPin _resetPowerDown { get; private set; }

/* Uncomment for Raspberry Pi 2 */
private const string SPI_CONTROLLER_NAME = "SPI0";
private const Int32 SPI_CHIP_SELECT_LINE = 0;
private const Int32 RESET_PIN = 25;

internal async Task InitIO()
{

try
{
IoController = GpioController.GetDefault();

_resetPowerDown = IoController.OpenPin(RESET_PIN);
_resetPowerDown.Write(GpioPinValue.High);
_resetPowerDown.SetDriveMode(GpioPinDriveMode.Output);
}
/* If initialization fails, throw an exception */
catch (Exception ex)
{
throw new Exception("GPIO initialization failed", ex);
}

try
{
var settings = new SpiConnectionSettings(SPI_CHIP_SELECT_LINE);
settings.ClockFrequency = 1000000;
settings.Mode = SpiMode.Mode0;

String spiDeviceSelector = SpiDevice.GetDeviceSelector();
IReadOnlyList<DeviceInformation> devices = await DeviceInformation.FindAllAsync(spiDeviceSelector);

_spi = await SpiDevice.FromIdAsync(devices[0].Id, settings);

}
/* If initialization fails, display the exception and stop running */
catch (Exception ex)
{
throw new Exception("SPI Initialization Failed", ex);
}

Reset();
}

public void Reset()
{
_resetPowerDown.Write(GpioPinValue.Low);
System.Threading.Tasks.Task.Delay(50).Wait();
_resetPowerDown.Write(GpioPinValue.High);
System.Threading.Tasks.Task.Delay(50).Wait();

// Force 100% ASK modulation
WriteRegister(Registers.TxAsk, 0x40);

// Set CRC to 0x6363
WriteRegister(Registers.Mode, 0x3D);

// Enable antenna
SetRegisterBits(Registers.TxControl, 0x03);
}

public bool IsTagPresent()
{
// Enable short frames
WriteRegister(Registers.BitFraming, 0x07);

// Transceive the Request command to the tag
Transceive(false, PiccCommands.Request);

// Disable short frames
WriteRegister(Registers.BitFraming, 0x00);

// Check if we found a card
return GetFifoLevel() == 2 && ReadFromFifoShort() == PiccResponses.AnswerToRequest;
}

public Uid ReadUid()
{
// Run the anti-collision loop on the card
Transceive(false, PiccCommands.Anticollision_1, PiccCommands.Anticollision_2);

// Return tag UID from FIFO
return new Uid(ReadFromFifo(5));
}

public void HaltTag()
{
// Transceive the Halt command to the tag
Transceive(false, PiccCommands.Halt_1, PiccCommands.Halt_2);
}

public bool SelectTag(Uid uid)
{
// Send Select command to tag
var data = new byte[7];
data[0] = PiccCommands.Select_1;
data[1] = PiccCommands.Select_2;
uid.FullUid.CopyTo(data, 2);

Transceive(true, data);

return GetFifoLevel() == 1 && ReadFromFifo() == PiccResponses.SelectAcknowledge;
}

internal byte[] ReadBlock(byte blockNumber, Uid uid, byte[] keyA = null, byte[] keyB = null)
{
if (keyA != null)
MifareAuthenticate(PiccCommands.AuthenticateKeyA, blockNumber, uid, keyA);
else if (keyB != null)
MifareAuthenticate(PiccCommands.AuthenticateKeyB, blockNumber, uid, keyB);
else
return null;

// Read block
Transceive(true, PiccCommands.Read, blockNumber);

return ReadFromFifo(16);
}

internal bool WriteBlock(byte blockNumber, Uid uid, byte[] data, byte[] keyA = null, byte[] keyB = null)
{
if (keyA != null)
MifareAuthenticate(PiccCommands.AuthenticateKeyA, blockNumber, uid, keyA);
else if (keyB != null)
MifareAuthenticate(PiccCommands.AuthenticateKeyB, blockNumber, uid, keyB);
else
return false;

// Write block
Transceive(true, PiccCommands.Write, blockNumber);

if (ReadFromFifo() != PiccResponses.Acknowledge)
return false;

// Make sure we write only 16 bytes
var buffer = new byte[16];
data.CopyTo(buffer, 0);

Transceive(true, buffer);

return ReadFromFifo() == PiccResponses.Acknowledge;
}

protected void MifareAuthenticate(byte command, byte blockNumber, Uid uid, byte[] key)
{
// Put reader in Idle mode
WriteRegister(Registers.Command, PcdCommands.Idle);

// Clear the FIFO
SetRegisterBits(Registers.FifoLevel, 0x80);

// Create Authentication packet
var data = new byte[12];
data[0] = command;
data[1] = (byte)(blockNumber & 0xFF);
key.CopyTo(data, 2);
uid.Bytes.CopyTo(data, 8);

WriteToFifo(data);

// Put reader in MfAuthent mode
WriteRegister(Registers.Command, PcdCommands.MifareAuthenticate);

// Wait for (a generous) 25 ms
System.Threading.Tasks.Task.Delay(25).Wait();
}

protected void Transceive(bool enableCrc, params byte[] data)
{
if (enableCrc)
{
// Enable CRC
SetRegisterBits(Registers.TxMode, 0x80);
SetRegisterBits(Registers.RxMode, 0x80);
}

// Put reader in Idle mode
WriteRegister(Registers.Command, PcdCommands.Idle);

// Clear the FIFO
SetRegisterBits(Registers.FifoLevel, 0x80);

// Write the data to the FIFO
WriteToFifo(data);

// Put reader in Transceive mode and start sending
WriteRegister(Registers.Command, PcdCommands.Transceive);
SetRegisterBits(Registers.BitFraming, 0x80);

// Wait for (a generous) 25 ms
System.Threading.Tasks.Task.Delay(25).Wait();

// Stop sending
ClearRegisterBits(Registers.BitFraming, 0x80);

if (enableCrc)
{
// Disable CRC
ClearRegisterBits(Registers.TxMode, 0x80);
ClearRegisterBits(Registers.RxMode, 0x80);
}
}

protected byte[] ReadFromFifo(int length)
{
var buffer = new byte[length];

for (int i = 0; i < length; i++)
buffer[i] = ReadRegister(Registers.FifoData);

return buffer;
}

protected byte ReadFromFifo()
{
return ReadFromFifo(1)[0];
}

protected void WriteToFifo(params byte[] values)
{
foreach (var b in values)
WriteRegister(Registers.FifoData, b);
}

protected int GetFifoLevel()
{
return ReadRegister(Registers.FifoLevel);
}

protected byte ReadRegister(byte register)
{
register <<= 1;
register |= 0x80;

var writeBuffer = new byte[] { register, 0x00 };

return TransferSpi(writeBuffer)[1];
}

protected ushort ReadFromFifoShort()
{
var low = ReadRegister(Registers.FifoData);
var high = (ushort)(ReadRegister(Registers.FifoData) << 8);

return (ushort)(high | low);
}

protected void WriteRegister(byte register, byte value)
{
register <<= 1;

var writeBuffer = new byte[] { register, value };

TransferSpi(writeBuffer);
}

protected void SetRegisterBits(byte register, byte bits)
{
var currentValue = ReadRegister(register);
WriteRegister(register, (byte)(currentValue | bits));
}

protected void ClearRegisterBits(byte register, byte bits)
{
var currentValue = ReadRegister(register);
WriteRegister(register, (byte)(currentValue & ~bits));
}

private byte[] TransferSpi(byte[] writeBuffer)
{
var readBuffer = new byte[writeBuffer.Length];

_spi.TransferFullDuplex(writeBuffer, readBuffer);

return readBuffer;
}
}
}

Schema

Schema

Two RFID RC522 Raspberry PI 2 Windows IOT

Finally I solved the problem.

Thank You Rita Han for your help. Your code now work great. Now because I had hardware problem.

I connected devices as a picture:

Connection RFID-RC522 to the Raspberry Pi.

After connecting the oscilloscope noticed that the voltage of MISO bus is not correct. Both devices pulling down the voltage to ground. Instead of 3,3V was barely 1,24V. (The minimum voltage for 3,3V CMOS logic level 1 is 2,4V)

One of the devices trying to transmit.

To quickly test I used two diodes (for separating outputs) and resistor (to speed up the falling edge).

Solution - separation output.

Result: 3,3V - Vf = 2,56V

Result - separation output.

Now both devices working great.

I think that ultimately it would be better to use SN74HC125N.

BTW: Why can not change the SS pin by property?

_spi.ConnectionSettings.ChipSelectLine = 1;

NFC-reader on Win IOT: Pin ' is currently opened in an incompatible sharing mode

This issue due to initializing GPIO pin is in use. Because every time you click the button the following line will be executed:

await mfrc.InitIO();

To solve this problem you can edit your code like this:

    private Mfrc522 mfrc = new Mfrc522();

public static bool IsGpioInitialized = false;

public async Task ReadNFCAsync()
{
if (!IsGpioInitialized)
{
await mfrc.InitIO();
IsGpioInitialized = true;
}
}

Raspberry Pi, Windows IoT, C#

The error means that the "JSON" class definition can't be found.
As @Eric Magers pointed out, you can find from the code source you referenced where is the JSON class defined.

Or you can also define your own "JSON" class, for example, like this:

internal class JSON
{
public JSON()
{
}

public string deviceId { get; internal set; }
public long distance { get; internal set; }
public DateTime time { get; internal set; }
}

Another method without defining "JSON" class like this:

        string dataBuffer;
DateTime time = DateTime.UtcNow;
long inputDistance = 0;
String deviceId = "MyCSharpDevice";

dataBuffer = string.Format("{{\"deviceId\":\"{0}\",\"distance\":{1},\"time\":{2}}}", deviceId, inputDistance, time);
Message message = new Message(Encoding.UTF8.GetBytes(dataBuffer));

await deviceClient.SendEventAsync(message);

For sending messages to Azure IoT Hub using HTTP protocol in C# you can reference this official sample. Note: the official sample is in Console Application and you are using a background application on Windows IoT Core. Application types are different but how to use Azure IoT Hub SDK is the same.



Related Topics



Leave a reply



Submit