How to Increase the Re-Usability of This Key-Oriented Access-Protection Pattern

Can we increase the re-usability of this key-oriented access-protection pattern?

I like this idiom, and it has the potential to become much cleaner and more expressive.

In standard C++03, I think the following way is the easiest to use and most generic. (Not too much of an improvement, though. Mostly saves on repeating yourself.) Because template parameters cannot be friends, we have to use a macro to define passkey's:

// define passkey groups
#define EXPAND(pX) pX

#define PASSKEY_1(pKeyname, pFriend1) \
class EXPAND(pKeyname) \
{ \
private: \
friend EXPAND(pFriend1); \
EXPAND(pKeyname)() {} \
\
EXPAND(pKeyname)(const EXPAND(pKeyname)&); \
EXPAND(pKeyname)& operator=(const EXPAND(pKeyname)&); \
}

#define PASSKEY_2(pKeyname, pFriend1, pFriend2) \
class EXPAND(pKeyname) \
{ \
private: \
friend EXPAND(pFriend1); \
friend EXPAND(pFriend2); \
EXPAND(pKeyname)() {} \
\
EXPAND(pKeyname)(const EXPAND(pKeyname)&); \
EXPAND(pKeyname)& operator=(const EXPAND(pKeyname)&); \
}
// and so on to some N

//////////////////////////////////////////////////////////
// test!
//////////////////////////////////////////////////////////
struct bar;
struct baz;
struct qux;
void quux(int, double);

struct foo
{
PASSKEY_1(restricted1_key, struct bar);
PASSKEY_2(restricted2_key, struct bar, struct baz);
PASSKEY_1(restricted3_key, void quux(int, double));

void restricted1(restricted1_key) {}
void restricted2(restricted2_key) {}
void restricted3(restricted3_key) {}
} f;

struct bar
{
void run(void)
{
// passkey works
f.restricted1(foo::restricted1_key());
f.restricted2(foo::restricted2_key());
}
};

struct baz
{
void run(void)
{
// cannot create passkey
/* f.restricted1(foo::restricted1_key()); */

// passkey works
f.restricted2(foo::restricted2_key());
}
};

struct qux
{
void run(void)
{
// cannot create any required passkeys
/* f.restricted1(foo::restricted1_key()); */
/* f.restricted2(foo::restricted2_key()); */
}
};

void quux(int, double)
{
// passkey words
f.restricted3(foo::restricted3_key());
}

void corge(void)
{
// cannot use quux's passkey
/* f.restricted3(foo::restricted3_key()); */
}

int main(){}

This method has two drawbacks: 1) the caller has to know the specific passkey it needs to create. While a simple naming scheme (function_key) basically eliminates it, it could still be one abstraction cleaner (and easier). 2) While it's not very difficult to use the macro can be seen as a bit ugly, requiring a block of passkey-definitions. However, improvements to these drawbacks cannot be made in C++03.


In C++0x, the idiom can reach its simplest and most expressive form. This is due to both variadic templates and allowing template parameters to be friends. (Note that MSVC pre-2010 allows template friend specifiers as an extension; therefore one can simulate this solution):

// each class has its own unique key only it can create
// (it will try to get friendship by "showing" its passkey)
template <typename T>
class passkey
{
private:
friend T; // C++0x, MSVC allows as extension
passkey() {}

// noncopyable
passkey(const passkey&) = delete;
passkey& operator=(const passkey&) = delete;
};

// functions still require a macro. this
// is because a friend function requires
// the entire declaration, which is not
// just a type, but a name as well. we do
// this by creating a tag and specializing
// the passkey for it, friending the function
#define EXPAND(pX) pX

// we use variadic macro parameters to allow
// functions with commas, it all gets pasted
// back together again when we friend it
#define PASSKEY_FUNCTION(pTag, pFunc, ...) \
struct EXPAND(pTag); \
\
template <> \
class passkey<EXPAND(pTag)> \
{ \
private: \
friend pFunc __VA_ARGS__; \
passkey() {} \
\
passkey(const passkey&) = delete; \
passkey& operator=(const passkey&) = delete; \
}

// meta function determines if a type
// is contained in a parameter pack
template<typename T, typename... List>
struct is_contained : std::false_type {};

template<typename T, typename... List>
struct is_contained<T, T, List...> : std::true_type {};

template<typename T, typename Head, typename... List>
struct is_contained<T, Head, List...> : is_contained<T, List...> {};

// this class can only be created with allowed passkeys
template <typename... Keys>
class allow
{
public:
// check if passkey is allowed
template <typename Key>
allow(const passkey<Key>&)
{
static_assert(is_contained<Key, Keys>::value,
"Passkey is not allowed.");
}

private:
// noncopyable
allow(const allow&) = delete;
allow& operator=(const allow&) = delete;
};

//////////////////////////////////////////////////////////
// test!
//////////////////////////////////////////////////////////
struct bar;
struct baz;
struct qux;
void quux(int, double);

// make a passkey for quux function
PASSKEY_FUNCTION(quux_tag, void quux(int, double));

struct foo
{
void restricted1(allow<bar>) {}
void restricted2(allow<bar, baz>) {}
void restricted3(allow<quux_tag>) {}
} f;

struct bar
{
void run(void)
{
// passkey works
f.restricted1(passkey<bar>());
f.restricted2(passkey<bar>());
}
};

struct baz
{
void run(void)
{
// passkey does not work
/* f.restricted1(passkey<baz>()); */

// passkey works
f.restricted2(passkey<baz>());
}
};

struct qux
{
void run(void)
{
// own passkey does not work,
// cannot create any required passkeys
/* f.restricted1(passkey<qux>()); */
/* f.restricted2(passkey<qux>()); */
/* f.restricted1(passkey<bar>()); */
/* f.restricted2(passkey<baz>()); */
}
};

void quux(int, double)
{
// passkey words
f.restricted3(passkey<quux_tag>());
}

void corge(void)
{
// cannot use quux's passkey
/* f.restricted3(passkey<quux_tag>()); */
}

int main(){}

Note with just the boilerplate code, in most cases (all non-function cases!) nothing more ever needs to be specially defined. This code generically and simply implements the idiom for any combination of classes and functions.

The caller doesn't need to try to create or remember a passkey specific to the function. Rather, each class now has its own unique passkey and the function simply chooses which passkey's it will allow in the template parameters of the passkey parameter (no extra definitions required); this eliminates both drawbacks. The caller just creates its own passkey and calls with that, and doesn't need to worry about anything else.

How to name this key-oriented access-protection pattern?

I like, in decreasing preference:

  • passkey friend idiom
  • passkey-door friend idiom
  • pass-door friend idiom
  • key-door friend idiom
  • partial-friend idiom
  • restricted-friend idiom

I moved away from the key-lock/key-keyhole naming scheme to the pass naming scheme, which grew on me.

Is this key-oriented access-protection pattern a known idiom?

Thanks to your other question it looks like this pattern is now known as the "passkey" pattern.

In C++11, it gets even cleaner, because instead of calling

b.protectedMethod(SomeKey());

you can just call:

b.protectedMethod({});

Make a friend class have only special access to 1 function of another class?

If there is one (or few) members functions in class A, that want to use class B's private member functions, then you can declare those one/few functions as friend. E.g.

class B {
// ...
friend void A::mutateB( B * );
// ...
};

See http://en.wikipedia.org/wiki/Friend_function

clean C++ granular friend equivalent? (Answer: Attorney-Client Idiom)

The Attorney-Client idiom may be what you're looking for. The mechanics are not too different from your member proxy class solution, but this way is more idiomatic.

Template Friending syntax

Befriending all possible specializations of baseclass2<D>::foo is rather easy:

template<class T> class baseclass1;

template<class D>
class baseclass2{
public:
template<class T>
void foo(D&, T&){ baseclass1<T> x; x.priv_foo(); }
};

template<class T>
class baseclass1{
template<class D>
template<class U>
friend void baseclass2<D>::foo(D&, U&);

void priv_foo(){}
};

template<class T>
class baseclass1{
template<class D>
template<class U>
friend void baseclass2<D>::foo(D&, U&);
};

Live example.

A forward declaration of baseclass2 (so baseclass1 knows that baseclass2 exists and is a template) and two templates, one for the class, one for the function. It also looks like this for out-of-class definitions for function templates of class templates. :)

Befriending specifically baseclass2<D>::foo<T> is not possible, however, or I can't find
the correct syntax for it.

A workaround might be some global function that forwards the access and together with the passkey pattern, but meh, it's a mess (imho):

template<class D> class baseclass2;

template<class D, class T>
void baseclass2_foo(baseclass2<D>& b, D&, T&);

template<class D, class T>
class baseclass2_foo_key{
baseclass2_foo_key(){} // private ctor
friend void baseclass2_foo<>(baseclass2<D>&, D&, T&);
};

template<class T>
class baseclass1{
public: // public access, but only baseclass2_foo can create the key
template<class D>
void priv_foo(baseclass2_foo_key<D, T> const&){}
};

template<class D, class T>
void baseclass2_foo(baseclass2<D>&, D&, T&){
baseclass1<T> x;
x.priv_foo(baseclass2_foo_key<D, T>());
}

template<class D>
class baseclass2{
public:
template<class T>
void foo(D& d, T& t){ baseclass2_foo(*this, d, t); }
};

Live example.



Related Topics



Leave a reply



Submit